1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Regularized solution of an inverse source problem for a time fractional diffusion equation

21 185 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 2,94 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nguyen et al., Regularized solution of an inverse source problem for a time fractional... The fractionalinitial boundaryvalue problemwasfirstlyconsidered byNigmatullin [4].After that,seve

Trang 1

journalhomepage:www.elsevier.com/locate/apm

Huy Tuan Nguyena,b, Dinh Long Leb, Van Thinh Nguyenc,∗

a Department of Mathematics and Computer Science, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam

b Institute of Computational Science and Technology, Ho Chi Minh City, Vietnam

c Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea

Inthispaper, westudy onan inverse problemto determine an unknownsource term

inatimefractionaldiffusionequation,whereby thedataareobtainedatthelatertime

Ingeneral,thisproblemisillposed,thereforetheTikhonovregularizationmethodisposedtosolvetheproblem.Inthetheoreticalresults,apriorierrorestimatebetweentheexactsolution and its regularizedsolutions is obtained Wealso proposetwo methods,

pro-aprioriandaposterioriparameterchoicerules,toestimatetheconvergencerateoftheregularizedmethods.Inaddition,theproposedregularizedmethodshavebeenverifiedbynumericalexperimentstoestimatetheerrorsbetweentheregularizedsolutionsand ex-actsolutions.Eventually,fromthenumericalresultsitshowsthattheposterioriparameterchoicerulemethodconvergestotheexactsolutionfasterthantheprioriparameterchoicerulemethod

© 2016ElsevierInc.Allrightsreserved

1 Introduction

Diffusionequationswithfractional orderderivativesplay an importantrole inmodelingofcontaminant diffusioncesses.OneofsuchproblemswasraisingbyAdamandGelhar [1];duringanalyzingthefielddataofdispersioninahetero-geneousaquifer,theycouldnotexplainalong-tailedprofileofspatialdensitydistributionbyaclassicaldiffusion–advectionequationwithintegerorderderivatives.Thelong-tailedprofileisofasymptoticbehavioroffundamentalsolutionneart=0,

pro-whichcanbedescribedbyatime-fractionaldiffusionequationasfollows:

∗ Corresponding author Tel.: +82 28807355

E-mail address: vnguyen@snu.ac.kr (V.T Nguyen)

http://dx.doi.org/10.1016/j.apm.2016.04.009

S0307-904X(16)30210-4/© 2016 Elsevier Inc All rights reserved

Please cite this article as: H.T Nguyen et al., Regularized solution of an inverse source problem for a time fractional

Trang 2

and(.)denotesthestandardGammafunction.Notethatifthefractionalorderα tendstounity,thefractional derivative

D α

t uconverges tothecanonical first-orderderivative du

dt [2], andthusthe problem(∗)reproduces the canonicaldiffusionmodel.See,e.g., [2,3]forthedefinitionandpropertiesofCaputosderivative

The fractionalinitial boundaryvalue problemwasfirstlyconsidered byNigmatullin [4].After that,severalapplications

ofthefractionalcalculus andderivativesinappliedsciencesweredeveloped; andtheresearch ontheoreticalanalysisandnumericalmethodsforsolvingdirectproblems,suchasinitialvalueand/orboundaryvalueproblemsforthetimefractionaldiffusionequationweregrowing.Forawell-posednessanalysis,wereferto [5–9];fornumericalmethodsandsimulations,see [10–16]andreferences therein.Unfortunately,some input dataandparameters ofthediffusionequations inpracticalproblemsmaybeunknown, suchasinitialandboundarydata,diffusioncoefficients,andsourceterms;thereforewehave

todeterminethembyadditionalmeasurementdatawhichcanbeyieldedfromafractionaldiffusioninverseproblem.Thefractional inverseproblem provides an efficient tool for the modeling of the anomalous diffusion processes observed invariousfieldsofscienceandengineering,suchasinbiology [17,18],physics [19,20],chemistry [21],andhydrology [22].Murio [23] considered an inverse problem of recovering boundary functions fromtransient data at an interior pointfor a 1D semi-infinite half-order time-fractional diffusion equation Liu and Yamamoto [24] applied a quasi-reversibilityregularization methodto solve abackward problemfor thetime-fractional diffusionequation Weietal. [25–27]studied

an inversesourceproblemfora spatialfractional diffusionequation usingquasi-boundaryvalue andtruncationmethods.Recently,Kiraneetal. [2,28]studiedconditionalwell-posednesstodetermineaspacedependentsourceforone-dimensionalandtwo-dimensional time-fractionaldiffusionequations.Rundell etal. [29–31]considered an inverseproblemfora one-dimensional time-fractionaldiffusionproblem However,there areonly afew studieson determinationofa sources termdependingonbothtimeandspaceforatimefractionaldiffusionequation

Inthiswork,wefocusonaninverseproblemforthefollowingtime-fractionaldiffusionequation:

0() Assuming that the source term F=F(x , t) can be split into a product of R(t)f(x), where R(t)

is knowninadvance.We assume thetime-dependentsource termR(t) isobtainedfromobservationdataR (t) in suchawaythatR (t)− R(t) L1(0,T ) and isanoiselevelfromameasurement.Thespace-dependentsourcetermf(x)isalsodeterminedfromtheobservationofh(x)atthefinaldatat=T byh L2()withthenoiselevelof andsatisfied:

Itisknownthattheinversesourceproblemmentioned aboveisill-posedingeneral,i.e.,a solutiondoesnotalways exist,andin the caseofexistence of a solution,which doesnot depend continuously on thegiven data.In fact,from a smallnoiseofaphysicalmeasurement,thecorrespondingsolutionsmayhavealargeerror.Thismakesatroublesomenessforthenumericalcomputation,hencearegularizationisrequired

If α=1, the inversesource Problems (1.1) and (1.2) is a classical ill-posed problemand has been studied in[20,32].However,forthefractionalinversesourceproblem,up-to-date,thereareonlyveryfewworks;forexample,SakamotoandYamamoto [9]usedthedatau(x0,t)(x0 ∈) todetermineR(t)oncef(x)wasgiven, wheretheauthorsobtainedaLipschitzstabilityforR(t).ZhangandWei [27]usedtheFouriertruncationmethod tosolveaninversesourceproblemwithR(t)=1

inProblem (1.1)forone-dimensionalproblemwithspecialcoefficients Theinversesourceproblemforthetime-fractionaldiffusion equation with R(t) dependedon time still has a limitedachievement Actually, this problemrecently hasbeen

Trang 3

introduced by JinandRundell on Page 18 of [33], howevera further regularized solution forthisproblem hasnot beenfocusedintheirpaper.

Motivatedby abovereasons,inthisstudy,weapplythe Tikhonovregularizationmethodtosolvethefractional inversesource problemwith variable coefficientsin a general bounded domain We estimate a convergence rate under a prioribound assumption of the exact solution anda priori parameter choice rule Because the priori bound is difficult to ob-tain inpractical application, so we alsoestimate a convergencerateunder theposterioriparameter choice rulewhich isindependentontheprioribound

Thepaperisorganizedasfollows.In Section2,weintroducesomepreliminaryresults.Theill-posednessofthefractionalinversesourceProblem (1.1)andaconditionalstabilityareprovidedin Section3.In Section4,weproposeaTikhonovreg-ularizationmethodandgivetwoconvergenceestimatesunderaprioriassumptionfortheexactsolutionandtworegular-izationparameterchoice rules.Finallytwo numericalexamples toverifyourproposed regularized methodsare showninSection5.Eventually,aconclusionisgivenin Section6

2 Preliminary results

Throughoutthispaper,weusethefollowingdefinitionandlemmas

Definition 2.1(see [3]). TheMittag–Lefflerfunctionis:

E α , β(z)=∞

k=0

z k

( αk+β ), z∈C

whereα>0andβ∈Rarearbitraryconstants

Lemma 2.1(see [3]). Letλ>0,then we have:

Lemma 2.3. For0<α<1,ρ>0,we have0≤ E α , α(ρ )≤ 1

(α) . Moreover, E α , α(ρ )is a monotonic decreasing function with

Trang 4

Theproofiscompleted 

3 The inverse source problem

First,we introducea fewpropertiesofthe eigenvaluesofthe operatorA onan open,connectedandboundeddomainwithDirichletboundaryconditions(seealsoinChapter6of [36])

Theorem 2.1. (EigenvaluesoftheLaplaceoperator)

1 Each eigenvalues of A is real The family of eigenvalues{ λp}∞

whereg p=  g(x) φp(x)dx ThenwealsodefinegH ()= ∞

p=1(1+λp)2γ|g p|2.Ifγ =0thenH γ()isL2().Thisspace

isintroducedbyBrezis [37](seeChapterV)andFengetal. [38](seepage179)

3.1 The formula and uniqueness of the source termf

Now we use the separation ofvariables to yield the solutionof (1.1).Suppose that the exact u isdefined by Fourierseries:

Trang 5

Theorem 3.1. Let R:[0, T]→Rbe as in Lemma 2.6, then the solution u(x, t),f(x)of Problems (1.1) and (1.2) is unique.

Proof.Letf1andf2 bethesourcefunctionscorrespondingtothefinalvaluesh1 andh2 respectively.Supposethat h1=h2

thenweprovethat f1= f2.Infact,itiswell-knownthatE α , α(λp(t − s)α)≥ 0for ≤ t.SinceR(t)≥ R0 >0fort∈[0,T],

Theproofiscompleted 

3.2 The ill-posedness of the inverse source problem

Theorem 3.2. The inverse source problem is ill-posed.

Proof.DefiningalinearoperatorK:L2()→L2()asfollows:

Trang 6

andbyKirsch [39],weconcludethatitisill-posed.Toillustrateanill-posedproblem,weintroducethefollowingexample.Letuschoosetheinputfinaldatah m(x)= φm ( x )

Combining (3.23)and (3.25),weconcludethattheinversesourceproblemisill-posed 

3.3 Conditional stability of the source termf

Inthissection,weintroduceaconditionalstabilitybythefollowingtheorem

Theorem 3.3. IffH () ≤ M for M >0then,

Proof. From (3.14)andHölderinequality,wehave:

Trang 7

4 Regularization of the inverse source problem using the Tikhonov method

Asmentionedabove,applyingtheTikhonovregularizationmethodwesolvetheinversesourceproblem,whichminimizesthefunctionfinthefollowingquantityinL2()

4.1 A priori parameter choice

Afterwards,wewillgiveanerrorestimationforf(x)− f β (x) L2()andshow convergencerateunderasuitablechoice

fortheregularizationparameter

Theorem 4.1. Let f be as Theorem 3 and the noise assumption (4.30) hold Then,

Trang 8

Lemma 4.1. Assume that (4.30) holds Then we have the following estimate:

Trang 9

Inordertoobtaintheboundednessofbias,we needtheprioricondition ByTikhonov’stheorem,theL−1 restrictedtothecontinuousimageofacompactsetM.Thus,weassumefisinacompactsubsetofL2().Fromnowon,weassumethat

Trang 10

Case 1:γ≥ 1;inthiscase,wenotethat:

If0≤γ ≤ 1thenfromLemmas4.1and4.2,weget:

Trang 11

4.2 A posteriori parameter choice

Inthissection,weconsideraposterioriregularizationparameterchoiceinMorozov’sdiscrepancyprinciple(seein [35])

Asusual,itfollowsthelemmabelow

If0<<h L2() , then the following results hold:

(a)ρ(β)is a continuous function.

(b)ρ(β)→0asβ→0.

(c)ρ ( β )→h L2() asβ →∞.

(d)ρ(β)is a strictly increasing function.

Theorem 4.2. Assume the priori condition and the noise assumption hold, and there exists k >1such that0< k<h  Then,

we choose a unique regularization parameterβ >0such that:

Trang 12

Firstly,wecanreceivethefollowingestimation:

Trang 13

Secondly,wehaveestimate:

Trang 15

2,wherethevalue

of Mplays a role as the priori condition computedby fH2(0, π ). Similarly, based on the choice of k we can take the

regularization parameter forthe posteriori parameter choice rule,βpos= 12

M{k,R,R  } ,where M{k ,R,R } is dependent on k, }satisfied (4.61)

From (3.14),wecandefinitetheexactsolution,asfollows:

5.1 Example 1

Inthisexample,weconsiderthefunctionfisanexactdatafunction.Weparticularlyconsideranone-dimensionalcase

oftheproblem (1.1)asfollowswithλp=p2 andT=1

Trang 16

Step 1ChooseQandLtogeneratethespatialandtemporaldiscretizationinsuchamanneras:

Step 3Errorestimatebetweentheexactandregularizedsolutions

Relativeerrorestimation:

Trang 17

Fig 1 A comparison between the exact solution and its regularized solution for the priori parameter choice rule in Example 1

Next,we establish the regularized solutionaccording to compositeSimpson’s rule.In this example,we choose P and

Qare large enough, unlike thefirst example,we can have fH2(0, π ) < M with M=112230 fromtheanalytical solution,whichimpliesthatβpri=(1

M)1

2 fortheprioriparameterchoice,andβpos= 12

M{k,R,R  } withM{k ,R,R }=239587fortheoriparameterchoicerulebasedonk=1.8andM{k ,R,R }= supt∈[0,T]|R ( t )|

posteri-2λ2

1 ( k2 −2)inft∈[0,T]|R  ( t )|fH ().In general,the whole numerical

procedureissummarizedinthefollowingsteps:

Trang 18

Fig 2 A comparison between the exact solution and its regularized solution for the posterior parameter choice rule in Example 1

Step 1 ChooseQ and K (in ourcomputations,Q=K=100 are chosen)to discretizespatialandtemporal domain,aslows:

Trang 19

Fig 3 A comparison between exact solution and its regularized solution for the priori parameter choice rule method in Example 2

Relativeerrorestimation:

by Figs. 3and 4combined with Table 2in the second example.Particularly, the error estimate shownin Tables 1and2showthattheposteriorparameterchoicerulemethodconvergestotheexactsolutionwithoneorderfasterthanthepriorparameterchoice rulemethod.Nevertheless,fromtwo examples,it alsoshowsourproposed regularized methodshaveaverygoodconvergenceratetotheexactsolutiononcetendsto0

Trang 20

Fig 4 A comparison between exact solution and its regularized solution for the posteriori parameter choice rule method in Example 2

6 Conclusion

Inthisstudy,we solvedtheinverseproblemtorecoverthesourcetermforthetime fractionaldiffusionequation withthetimedependentcoefficientbyapplyingTikhonovmethod.Inthetheoreticalresults,weobtainedtheerrorestimatesoftwo prioriandposterior parameterchoice rulemethods basedon theprioricondition Inthe numericalresults,it showsthattheproposedregularizedsolutionsareconvergedtotheexactsolutions.Furthermore,italsoshowsthattheposterioriparameterchoice rulemethodisbetter thanthepriori parameterchoicerulemethod intermofthe convergencerate.Inthefuturework,wewillcontinuetostudysomesourcetermsformultiplediffusionequations

Trang 21

[3] I Podlubny , Fractional Differential Equations, Mathematics in Science and Engineering,, 198, Academic Press Inc., San Diego, CA, 1990

[4] R Nigmatulin , The realization of the generalized transfer equation in a medium with fractal geometry., Phys Stat Sol B 133 (1986) 425–430 [5] D.S Eidelman , N.A Kochubei , Cauchy problem for fractional diffusion equations, J Differ Equ 199 (2) (2004) 211–255

[6] A Hanyga , Multidimensional solutions of time-fractional diffusion–wave equations., R Soc Lond Proc Ser A Math Phys Eng Sci 458 (2020) (2002) 933–957

[7] Y Luchko , Maximum principle for the generalized time-fractional diffusion equation, J Math Anal Appl 351 (1) (2009) 218–223

[8] Y Luchko , Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract Calc Appl Anal 15 (1) (2012) 141160 [9] K Sakamoto , M Yamamoto , Initial value/boundary value problems for fractional diffusion–wave equations and applications to some inverse problems,

J Math Anal Appl 382 (1) (2011) 426–447

[10] F Liu , P Zhuang , I Turner , K Burrage , V Anh , A new fractional finite volume method for solving the fractional diffusion equation, Appl Math Model

38 (15-16) (2014) 3871–3878

[11] S Shen , F Liu , J Chen , I Turner , V Anh , Numerical techniques for the variable order time fractional diffusion equation, Appl Math Comput 218 (22) (2012) 10861–10870

[12] W McLean , Regularity of solutions to a time-fractional diffusion equation, ANZIAM J 52 (2) (2010) 123–138

[13] K Mustapha , W McLean , Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J Numer Anal 51 (1) (2013) 491–515

[14] Y Zhang , Z.Z Sun , H.L Liao , Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J Comput Phys 265 (2014)

[18] B Yu , X Jiang , C Wang , Numerical algorithms to estimate relaxation parameters and caputo fractional derivative for a fractional thermal wave model

in spherical composite medium, J Appl Math Comput 274 (2016) 106–118

[19] R Metzler , J Klafter , The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys Rep 339 (20 0 0) 1–77

[20] W Fan , X Jiang , H Qi , Parameter estimation for the generalized fractional element network zener model based on the Bayesian method, Physica A

427 (2015) 40–49

[21] S.B Yuste , L Acedo , K Lindenberg , Reaction front in an a+b → c reaction–subdiffusion process, Phys Rev E 69 (2004) 036126

[22] F Liu , V Anh , I Turner , Numerical solution of the space fractional Fokker–Planck equation, J Comput Appl Math 166 (2004) 209–219

[23] D.A Murio , Stable numerical solution of fractional-diffusion inverse heat conduction problem, Comput Math Appl 53 (2007) 1492–1501

[24] J.J Liu , M Yamamoto , A backward problem for the time-fractional diffusion equation, Appl Anal 89 (2010) 1769–1788

[25] T Wei , J Wang , A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl Numer Math

[29] B Jin , W Rundell , An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Probl 28 (7) (2012) 075010 19 pp

[30] W Rundell , X Xu , L Zuo , The determination of an unknown boundary condition in a fractional diffusion equation, Appl Anal 92 (7) (2013) 1511–1526 [31] Y Luchko , W Rundell , M Yamamoto , L Zuo , Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction–diffusion equation, Inverse Probl 29 (2013) 065019 16pp

[32] H.E Roman , P.A Alemany , Continuous-time random walks and the fractional diffusion equation, J Phys A 27 (1994) 3407–3410

[33] B Jin , W Rundell , A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl 31 (2015) 035003 40pp

[34] R Metzler , J Klafter , Boundary value problems for fractional diffusion equations, Phys A 278 (20 0 0) 107–125

[35] A A Kilbas , H.M Srivastava , J J.Trujillo , Theory and Application of Fractional differnetial equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V, Amsterdam, 2006

[36] L.C Evans , Partial Differential Equation, 19, American Mathematical Society, Providence, Rhode Island, 1997

[37] H Brezis , Analyse Fonctionelle, Masson, Paris, 1983

[38] X.L Feng , L Elden , C.L Fu , Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, J Math Comp Simul 79 (2) (2008) 177–188

[39] A Kirsch, An introduction to the mathematical theory of inverse problem, second ed., 2011, Springer

... time- fractional diffusion equation, Fract Calc Appl Anal 15 (1) (2012) 141160 [9] K Sakamoto , M Yamamoto , Initial value/boundary value problems for fractional diffusion? ??wave equations and applications... convergencerate.Inthefuturework,wewillcontinuetostudysomesourcetermsformultiplediffusionequations

Trang 21

[3] I Podlubny , Fractional Differential Equations, Mathematics in... class="text_page_counter">Trang 16

Step 1ChooseQandLtogeneratethespatialandtemporaldiscretizationinsuchamanneras:

Step 3Errorestimatebetweentheexactandregularizedsolutions

Ngày đăng: 14/12/2017, 16:19

TỪ KHÓA LIÊN QUAN