Nguyen et al., Regularized solution of an inverse source problem for a time fractional... The fractionalinitial boundaryvalue problemwasfirstlyconsidered byNigmatullin [4].After that,seve
Trang 1journalhomepage:www.elsevier.com/locate/apm
Huy Tuan Nguyena,b, Dinh Long Leb, Van Thinh Nguyenc,∗
a Department of Mathematics and Computer Science, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
b Institute of Computational Science and Technology, Ho Chi Minh City, Vietnam
c Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea
Inthispaper, westudy onan inverse problemto determine an unknownsource term
inatimefractionaldiffusionequation,whereby thedataareobtainedatthelatertime
Ingeneral,thisproblemisillposed,thereforetheTikhonovregularizationmethodisposedtosolvetheproblem.Inthetheoreticalresults,apriorierrorestimatebetweentheexactsolution and its regularizedsolutions is obtained Wealso proposetwo methods,
pro-aprioriandaposterioriparameterchoicerules,toestimatetheconvergencerateoftheregularizedmethods.Inaddition,theproposedregularizedmethodshavebeenverifiedbynumericalexperimentstoestimatetheerrorsbetweentheregularizedsolutionsand ex-actsolutions.Eventually,fromthenumericalresultsitshowsthattheposterioriparameterchoicerulemethodconvergestotheexactsolutionfasterthantheprioriparameterchoicerulemethod
© 2016ElsevierInc.Allrightsreserved
1 Introduction
Diffusionequationswithfractional orderderivativesplay an importantrole inmodelingofcontaminant diffusioncesses.OneofsuchproblemswasraisingbyAdamandGelhar [1];duringanalyzingthefielddataofdispersioninahetero-geneousaquifer,theycouldnotexplainalong-tailedprofileofspatialdensitydistributionbyaclassicaldiffusion–advectionequationwithintegerorderderivatives.Thelong-tailedprofileisofasymptoticbehavioroffundamentalsolutionneart=0,
pro-whichcanbedescribedbyatime-fractionaldiffusionequationasfollows:
∗ Corresponding author Tel.: +82 28807355
E-mail address: vnguyen@snu.ac.kr (V.T Nguyen)
http://dx.doi.org/10.1016/j.apm.2016.04.009
S0307-904X(16)30210-4/© 2016 Elsevier Inc All rights reserved
Please cite this article as: H.T Nguyen et al., Regularized solution of an inverse source problem for a time fractional
Trang 2and(.)denotesthestandardGammafunction.Notethatifthefractionalorderα tendstounity,thefractional derivative
D α
t uconverges tothecanonical first-orderderivative du
dt [2], andthusthe problem(∗)reproduces the canonicaldiffusionmodel.See,e.g., [2,3]forthedefinitionandpropertiesofCaputosderivative
The fractionalinitial boundaryvalue problemwasfirstlyconsidered byNigmatullin [4].After that,severalapplications
ofthefractionalcalculus andderivativesinappliedsciencesweredeveloped; andtheresearch ontheoreticalanalysisandnumericalmethodsforsolvingdirectproblems,suchasinitialvalueand/orboundaryvalueproblemsforthetimefractionaldiffusionequationweregrowing.Forawell-posednessanalysis,wereferto [5–9];fornumericalmethodsandsimulations,see [10–16]andreferences therein.Unfortunately,some input dataandparameters ofthediffusionequations inpracticalproblemsmaybeunknown, suchasinitialandboundarydata,diffusioncoefficients,andsourceterms;thereforewehave
todeterminethembyadditionalmeasurementdatawhichcanbeyieldedfromafractionaldiffusioninverseproblem.Thefractional inverseproblem provides an efficient tool for the modeling of the anomalous diffusion processes observed invariousfieldsofscienceandengineering,suchasinbiology [17,18],physics [19,20],chemistry [21],andhydrology [22].Murio [23] considered an inverse problem of recovering boundary functions fromtransient data at an interior pointfor a 1D semi-infinite half-order time-fractional diffusion equation Liu and Yamamoto [24] applied a quasi-reversibilityregularization methodto solve abackward problemfor thetime-fractional diffusionequation Weietal. [25–27]studied
an inversesourceproblemfora spatialfractional diffusionequation usingquasi-boundaryvalue andtruncationmethods.Recently,Kiraneetal. [2,28]studiedconditionalwell-posednesstodetermineaspacedependentsourceforone-dimensionalandtwo-dimensional time-fractionaldiffusionequations.Rundell etal. [29–31]considered an inverseproblemfora one-dimensional time-fractionaldiffusionproblem However,there areonly afew studieson determinationofa sources termdependingonbothtimeandspaceforatimefractionaldiffusionequation
Inthiswork,wefocusonaninverseproblemforthefollowingtime-fractionaldiffusionequation:
0() Assuming that the source term F=F(x , t) can be split into a product of R(t)f(x), where R(t)
is knowninadvance.We assume thetime-dependentsource termR(t) isobtainedfromobservationdataR (t) in suchawaythatR (t)− R(t) L1(0,T )≤ and isanoiselevelfromameasurement.Thespace-dependentsourcetermf(x)isalsodeterminedfromtheobservationofh(x)atthefinaldatat=T byh ∈L2()withthenoiselevelof andsatisfied:
Itisknownthattheinversesourceproblemmentioned aboveisill-posedingeneral,i.e.,a solutiondoesnotalways exist,andin the caseofexistence of a solution,which doesnot depend continuously on thegiven data.In fact,from a smallnoiseofaphysicalmeasurement,thecorrespondingsolutionsmayhavealargeerror.Thismakesatroublesomenessforthenumericalcomputation,hencearegularizationisrequired
If α=1, the inversesource Problems (1.1) and (1.2) is a classical ill-posed problemand has been studied in[20,32].However,forthefractionalinversesourceproblem,up-to-date,thereareonlyveryfewworks;forexample,SakamotoandYamamoto [9]usedthedatau(x0,t)(x0 ∈) todetermineR(t)oncef(x)wasgiven, wheretheauthorsobtainedaLipschitzstabilityforR(t).ZhangandWei [27]usedtheFouriertruncationmethod tosolveaninversesourceproblemwithR(t)=1
inProblem (1.1)forone-dimensionalproblemwithspecialcoefficients Theinversesourceproblemforthetime-fractionaldiffusion equation with R(t) dependedon time still has a limitedachievement Actually, this problemrecently hasbeen
Trang 3introduced by JinandRundell on Page 18 of [33], howevera further regularized solution forthisproblem hasnot beenfocusedintheirpaper.
Motivatedby abovereasons,inthisstudy,weapplythe Tikhonovregularizationmethodtosolvethefractional inversesource problemwith variable coefficientsin a general bounded domain We estimate a convergence rate under a prioribound assumption of the exact solution anda priori parameter choice rule Because the priori bound is difficult to ob-tain inpractical application, so we alsoestimate a convergencerateunder theposterioriparameter choice rulewhich isindependentontheprioribound
Thepaperisorganizedasfollows.In Section2,weintroducesomepreliminaryresults.Theill-posednessofthefractionalinversesourceProblem (1.1)andaconditionalstabilityareprovidedin Section3.In Section4,weproposeaTikhonovreg-ularizationmethodandgivetwoconvergenceestimatesunderaprioriassumptionfortheexactsolutionandtworegular-izationparameterchoice rules.Finallytwo numericalexamples toverifyourproposed regularized methodsare showninSection5.Eventually,aconclusionisgivenin Section6
2 Preliminary results
Throughoutthispaper,weusethefollowingdefinitionandlemmas
Definition 2.1(see [3]). TheMittag–Lefflerfunctionis:
E α , β(z)=∞
k=0
z k
( αk+β ), z∈C
whereα>0andβ∈Rarearbitraryconstants
Lemma 2.1(see [3]). Letλ>0,then we have:
Lemma 2.3. For0<α<1,ρ>0,we have0≤ E α , α(−ρ )≤ 1
(α) . Moreover, E α , α(−ρ )is a monotonic decreasing function with
Trang 4Theproofiscompleted
3 The inverse source problem
First,we introducea fewpropertiesofthe eigenvaluesofthe operatorA onan open,connectedandboundeddomainwithDirichletboundaryconditions(seealsoinChapter6of [36])
Theorem 2.1. (EigenvaluesoftheLaplaceoperator)
1 Each eigenvalues of A is real The family of eigenvalues{ λp}∞
whereg p= g(x) φp(x)dx ThenwealsodefinegH ()=∞
p=1(1+λp)2γ|g p|2.Ifγ =0thenH γ()isL2().Thisspace
isintroducedbyBrezis [37](seeChapterV)andFengetal. [38](seepage179)
3.1 The formula and uniqueness of the source termf
Now we use the separation ofvariables to yield the solutionof (1.1).Suppose that the exact u isdefined by Fourierseries:
Trang 5Theorem 3.1. Let R:[0, T]→Rbe as in Lemma 2.6, then the solution u(x, t),f(x)of Problems (1.1) and (1.2) is unique.
Proof.Letf1andf2 bethesourcefunctionscorrespondingtothefinalvaluesh1 andh2 respectively.Supposethat h1=h2
thenweprovethat f1= f2.Infact,itiswell-knownthatE α , α(−λp(t − s)α)≥ 0for ≤ t.SinceR(t)≥ R0 >0fort∈[0,T],
Theproofiscompleted
3.2 The ill-posedness of the inverse source problem
Theorem 3.2. The inverse source problem is ill-posed.
Proof.DefiningalinearoperatorK:L2()→L2()asfollows:
Trang 6andbyKirsch [39],weconcludethatitisill-posed.Toillustrateanill-posedproblem,weintroducethefollowingexample.Letuschoosetheinputfinaldatah m(x)= φ√m ( x )
Combining (3.23)and (3.25),weconcludethattheinversesourceproblemisill-posed
3.3 Conditional stability of the source termf
Inthissection,weintroduceaconditionalstabilitybythefollowingtheorem
Theorem 3.3. IffH () ≤ M for M >0then,
Proof. From (3.14)andHölderinequality,wehave:
Trang 74 Regularization of the inverse source problem using the Tikhonov method
Asmentionedabove,applyingtheTikhonovregularizationmethodwesolvetheinversesourceproblem,whichminimizesthefunctionfinthefollowingquantityinL2()
4.1 A priori parameter choice
Afterwards,wewillgiveanerrorestimationforf(x)− f β (x) L2()andshow convergencerateunderasuitablechoice
fortheregularizationparameter
Theorem 4.1. Let f be as Theorem 3 and the noise assumption (4.30) hold Then,
Trang 8Lemma 4.1. Assume that (4.30) holds Then we have the following estimate:
Trang 9Inordertoobtaintheboundednessofbias,we needtheprioricondition ByTikhonov’stheorem,theL−1 restrictedtothecontinuousimageofacompactsetM.Thus,weassumefisinacompactsubsetofL2().Fromnowon,weassumethat
Trang 10Case 1:γ≥ 1;inthiscase,wenotethat:
If0≤γ ≤ 1thenfromLemmas4.1and4.2,weget:
Trang 114.2 A posteriori parameter choice
Inthissection,weconsideraposterioriregularizationparameterchoiceinMorozov’sdiscrepancyprinciple(seein [35])
Asusual,itfollowsthelemmabelow
If0<<h L2() , then the following results hold:
(a)ρ(β)is a continuous function.
(b)ρ(β)→0asβ→0.
(c)ρ ( β )→h L2() asβ →∞.
(d)ρ(β)is a strictly increasing function.
Theorem 4.2. Assume the priori condition and the noise assumption hold, and there exists k >1such that0< k<h Then,
we choose a unique regularization parameterβ >0such that:
Trang 12Firstly,wecanreceivethefollowingestimation:
Trang 13Secondly,wehaveestimate:
Trang 152,wherethevalue
of Mplays a role as the priori condition computedby fH2(0, π ). Similarly, based on the choice of k we can take the
regularization parameter forthe posteriori parameter choice rule,βpos= 12
M{k,R,R } ,where M{k ,R,R } is dependent on k, }satisfied (4.61)
From (3.14),wecandefinitetheexactsolution,asfollows:
5.1 Example 1
Inthisexample,weconsiderthefunctionfisanexactdatafunction.Weparticularlyconsideranone-dimensionalcase
oftheproblem (1.1)asfollowswithλp=p2 andT=1
Trang 16Step 1ChooseQandLtogeneratethespatialandtemporaldiscretizationinsuchamanneras:
Step 3Errorestimatebetweentheexactandregularizedsolutions
Relativeerrorestimation:
Trang 17Fig 1 A comparison between the exact solution and its regularized solution for the priori parameter choice rule in Example 1
Next,we establish the regularized solutionaccording to compositeSimpson’s rule.In this example,we choose P and
Qare large enough, unlike thefirst example,we can have fH2(0, π ) < M with M=112230 fromtheanalytical solution,whichimpliesthatβpri=(1
M)1
2 fortheprioriparameterchoice,andβpos= 12
M{k,R,R } withM{k ,R,R }=239587fortheoriparameterchoicerulebasedonk=1.8andM{k ,R,R }= supt∈[0,T]|R ( t )|
posteri-2λ2
1 ( k2 −2)inft∈[0,T]|R ( t )|fH ().In general,the whole numerical
procedureissummarizedinthefollowingsteps:
Trang 18Fig 2 A comparison between the exact solution and its regularized solution for the posterior parameter choice rule in Example 1
Step 1 ChooseQ and K (in ourcomputations,Q=K=100 are chosen)to discretizespatialandtemporal domain,aslows:
Trang 19Fig 3 A comparison between exact solution and its regularized solution for the priori parameter choice rule method in Example 2
Relativeerrorestimation:
by Figs. 3and 4combined with Table 2in the second example.Particularly, the error estimate shownin Tables 1and2showthattheposteriorparameterchoicerulemethodconvergestotheexactsolutionwithoneorderfasterthanthepriorparameterchoice rulemethod.Nevertheless,fromtwo examples,it alsoshowsourproposed regularized methodshaveaverygoodconvergenceratetotheexactsolutiononcetendsto0
Trang 20Fig 4 A comparison between exact solution and its regularized solution for the posteriori parameter choice rule method in Example 2
6 Conclusion
Inthisstudy,we solvedtheinverseproblemtorecoverthesourcetermforthetime fractionaldiffusionequation withthetimedependentcoefficientbyapplyingTikhonovmethod.Inthetheoreticalresults,weobtainedtheerrorestimatesoftwo prioriandposterior parameterchoice rulemethods basedon theprioricondition Inthe numericalresults,it showsthattheproposedregularizedsolutionsareconvergedtotheexactsolutions.Furthermore,italsoshowsthattheposterioriparameterchoice rulemethodisbetter thanthepriori parameterchoicerulemethod intermofthe convergencerate.Inthefuturework,wewillcontinuetostudysomesourcetermsformultiplediffusionequations
Trang 21[3] I Podlubny , Fractional Differential Equations, Mathematics in Science and Engineering,, 198, Academic Press Inc., San Diego, CA, 1990
[4] R Nigmatulin , The realization of the generalized transfer equation in a medium with fractal geometry., Phys Stat Sol B 133 (1986) 425–430 [5] D.S Eidelman , N.A Kochubei , Cauchy problem for fractional diffusion equations, J Differ Equ 199 (2) (2004) 211–255
[6] A Hanyga , Multidimensional solutions of time-fractional diffusion–wave equations., R Soc Lond Proc Ser A Math Phys Eng Sci 458 (2020) (2002) 933–957
[7] Y Luchko , Maximum principle for the generalized time-fractional diffusion equation, J Math Anal Appl 351 (1) (2009) 218–223
[8] Y Luchko , Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract Calc Appl Anal 15 (1) (2012) 141160 [9] K Sakamoto , M Yamamoto , Initial value/boundary value problems for fractional diffusion–wave equations and applications to some inverse problems,
J Math Anal Appl 382 (1) (2011) 426–447
[10] F Liu , P Zhuang , I Turner , K Burrage , V Anh , A new fractional finite volume method for solving the fractional diffusion equation, Appl Math Model
38 (15-16) (2014) 3871–3878
[11] S Shen , F Liu , J Chen , I Turner , V Anh , Numerical techniques for the variable order time fractional diffusion equation, Appl Math Comput 218 (22) (2012) 10861–10870
[12] W McLean , Regularity of solutions to a time-fractional diffusion equation, ANZIAM J 52 (2) (2010) 123–138
[13] K Mustapha , W McLean , Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J Numer Anal 51 (1) (2013) 491–515
[14] Y Zhang , Z.Z Sun , H.L Liao , Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J Comput Phys 265 (2014)
[18] B Yu , X Jiang , C Wang , Numerical algorithms to estimate relaxation parameters and caputo fractional derivative for a fractional thermal wave model
in spherical composite medium, J Appl Math Comput 274 (2016) 106–118
[19] R Metzler , J Klafter , The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys Rep 339 (20 0 0) 1–77
[20] W Fan , X Jiang , H Qi , Parameter estimation for the generalized fractional element network zener model based on the Bayesian method, Physica A
427 (2015) 40–49
[21] S.B Yuste , L Acedo , K Lindenberg , Reaction front in an a+b → c reaction–subdiffusion process, Phys Rev E 69 (2004) 036126
[22] F Liu , V Anh , I Turner , Numerical solution of the space fractional Fokker–Planck equation, J Comput Appl Math 166 (2004) 209–219
[23] D.A Murio , Stable numerical solution of fractional-diffusion inverse heat conduction problem, Comput Math Appl 53 (2007) 1492–1501
[24] J.J Liu , M Yamamoto , A backward problem for the time-fractional diffusion equation, Appl Anal 89 (2010) 1769–1788
[25] T Wei , J Wang , A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl Numer Math
[29] B Jin , W Rundell , An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Probl 28 (7) (2012) 075010 19 pp
[30] W Rundell , X Xu , L Zuo , The determination of an unknown boundary condition in a fractional diffusion equation, Appl Anal 92 (7) (2013) 1511–1526 [31] Y Luchko , W Rundell , M Yamamoto , L Zuo , Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction–diffusion equation, Inverse Probl 29 (2013) 065019 16pp
[32] H.E Roman , P.A Alemany , Continuous-time random walks and the fractional diffusion equation, J Phys A 27 (1994) 3407–3410
[33] B Jin , W Rundell , A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl 31 (2015) 035003 40pp
[34] R Metzler , J Klafter , Boundary value problems for fractional diffusion equations, Phys A 278 (20 0 0) 107–125
[35] A A Kilbas , H.M Srivastava , J J.Trujillo , Theory and Application of Fractional differnetial equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V, Amsterdam, 2006
[36] L.C Evans , Partial Differential Equation, 19, American Mathematical Society, Providence, Rhode Island, 1997
[37] H Brezis , Analyse Fonctionelle, Masson, Paris, 1983
[38] X.L Feng , L Elden , C.L Fu , Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, J Math Comp Simul 79 (2) (2008) 177–188
[39] A Kirsch, An introduction to the mathematical theory of inverse problem, second ed., 2011, Springer
... time- fractional diffusion equation, Fract Calc Appl Anal 15 (1) (2012) 141160 [9] K Sakamoto , M Yamamoto , Initial value/boundary value problems for fractional diffusion? ??wave equations and applications... convergencerate.Inthefuturework,wewillcontinuetostudysomesourcetermsformultiplediffusionequations Trang 21[3] I Podlubny , Fractional Differential Equations, Mathematics in... class="text_page_counter">Trang 16
Step 1ChooseQandLtogeneratethespatialandtemporaldiscretizationinsuchamanneras:
Step 3Errorestimatebetweentheexactandregularizedsolutions