1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: On the solution of a class of function equation in plane geometry

5 170 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 521,71 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĩirstìy we deal with continuous and differential solutions... Firstly, we formulate propositions for some simple specialized cases... Hence, ihc general solution is o f the form 10.. App

Trang 1

VNU Journal of Science, M athcrrnatics - Physics 27 (2011) 85-89

On the solution o f a class o f function equation in plane

geometry

Nguyen Van Mau*

Faculty o f Mathematics, Mechanics and Informatics VNU University o f Science, 334 Nguyen Trai, Hanoi, Vietnam

Received 30 March 2011

A bstract We deal with a class of function equation in plane geometry Let I (A ) be the set of all

triples of positive numbers {A , 5 , C ) such that

A-\- B c — 7 Ĩ ^

i.e every triple ( ^ , 5 , C ) e r ( A ) forms a ữiangle A /1 5 C with 3 angles A , B , C let

r ( A ) be the set of all triples of positive numbers (ứf,ồ,c) such that

Ố - C < a < ố + c , i.e every triple ( a , ố , c ) G r ( A ) forms a triangle A /45C with 3 side-Iengths being a , ^ , c :

■^rhe main our purpose is to describe ửie general solutions of the following functional equation

in plane geometry:

- Determine all function f : (0,oo) —>• such that ( / ( y í ) , / ( ổ ) , / ( C ) ) G r(A) fo r

a ỉ ỉ { A , B , C ) ^ T { ầ )

*■ Determine all function f : (0,co) —> (0,co) such that ( / (ữ ),/(ồ ),/(c )) e r(A) fo r all

2000 Mathermatics Subject Classification: 47J17, 47J06, 47J25, 65J14, 65J20, 65J05

1 On the general solution o f function equations induced by triangle angles

In the sequel, Let r ( A ) be the set o f all triples o f positive numbers {A, B, C ) such that

-f 5 + c = 7T,

i.e every triple ( y í , ổ , C ) G r(A) forms a triangle A ^ 5 C w i t h 3 angles A , B , C , and denote by

r ọ ( A ) the set o f all triples o f non-negative numbers ( ^ , 5 , C ) such th at^ + 5 + c = 7Ĩ.

Let r ( A ) b e the set o f all triples o f positive numbers ( a , ố , c ) such that

b - c \ < a < b - \ - c , i.e every triple { A , B , C ) e r ( A ) forms a triangle A A B C with 3 side-lengths being a; b; c:

The main purpose o f the paper is to find the general solutions o f the following functional equations

* E-mail: maunv@vnu.edu.vn

85

Trang 2

86 N.v M au / VNU J o u rn a l o f Science, M athem atics - Physics 27 (2011) 85-89

M ain problem 1 Determine all functions / : (0,7t) ^ (0,7t) such that { f { A ) , f { B ) , f { C ) ) e r(A)

f o r a ll e r ( A )

M ain problem 2 Determine all functions / : (0, oo) —> (0, oo) ( / :

( / ( « ) , :{b), / ( c ) ) G F ( A ) for all (a, b, c) € F { A )

ĩirstìy we deal with continuous and differential solutions.

E + ) such that

ProblcEi 1,1 Determine the general continuous solution f{x) in [0,7t] and differentiabe in (0,7r) with

/ ( 0 ) = 0 such that i f ( A), f { B ) , / ( C ) ) e r ( A ) for M { A , B , C ) e r ( A )

Solutioi We determine a diíĩerentiable function / ( x ) such that

f { x ) > 0 , V x e ( 0 , 7 r )

/ ( 0 ) = 0

f { A ) + f { B ) + f { C ) = 7 T

The assumption / ( 0 ) = 0 follows / ( t t ) = 7T and c = 7T - { A + B)

That follows

hay

ỉ { x ) + f { y ) + f{Tĩ - X - y ) = TĨ, V x ,2/ , x + i / G [0,7t] (1)

The denvative in X o f the both side o f (1) is given by

f { ^ ) - f '{ '^ - X - y ) V x , y , x + y G [0,7t] (2)

Equalitj (8) follows that f ' { x ) is constant in ( 0 , 7r) and then f { x ) — p x + q Since / ( 0 ) = 0 then

g = 0 aid f { x ) = px Since / ( t t ) = 7T then p = I and we find f { x ) X.

Kence, only the function f{x) = X is a continuous in [0,7r] and differentiabe in (0, 7 t ) with

/ ( 0 ) = 0 such that f { A ) , f { B ) , f { C ) form 3 angles o f a triangle for all given A A B C

P r o b lc n 1.2 Determine all functions f { x ) defined in [0, 7t] such that i f { A) , f { B ) , f { C ) ) 6 r ( A ) for all given {A, D, C) E r ( A ) and / ( 0 ) = 0.

Soiutioi We formulate Problem 1.2 in the following equivalent form:

E-etermine the general solution in [0, 7t] o f the functional equation

+ f { y ) + / { t t - X - y) = 7T, \ / x , y G {0, Tĩ ) , x + y < TT.

f { 0 ) = 0, f { x ) > 0 , V x G ( 0 , 7 t ) Since / ( 0 ) = 0, from (3) w e get

/ ( x ) + / ( 0 ) + / (tt - x) = 7T, V x e [ 0 , 7 r \

Pating / ( x ) = X + g{ x) then ổ(O) = 0 and

{3) X + g{ x ) + { tĩ - x ) + g(7T — x ) = 7T

g [ x ) + g{-K - x ) - 0, Vx c [0 ,7T

(3)

Trang 3

N.v M a u / VNU Journal o f Science, M alhem alics - P hysics 27 (2011) 85-89 87

or

(j{tĩ - x) = - f j { x ) , v.r e [0, n

Putting f { x ) X + ( j {x) to (3) and using (4), we find

+ V -I- iiiv) + 7T - (x + y) i- (]{n - {x -f y)) = 7T, Vx, y e [0,7r), X + y ^ 7T

M)

or

■J)

f j {x + y) (j{x) + g{ y ) , Vx', y G [ 0 , 7r], X + y iC 7T.

Hence i/(;r) is additive in [0,7t] On the other hand, since f { x ) > 0 for all X e (0,7t), it follows q{x) > - X > - 7T, i.e g is bounded from the lower and then (J is linear (cf.[ 1 ]-[3]) Hence

g { x ) = a x > - X for all X € (0,7t) It follows a > - 1

Hence, the general solution o f the problem 1.2 is f { x ) ” (1 + n ) x , a > - 1 Futhermore, by

t he as su mp ti on , t he equ al it y f { A ) + f { D ) + f ( C ) - 7T follows 1 4- a — 1, i.e a = 0 and f { x ) = X

T h e o r e m 1.1 All functions f { x ) defined in [0, 7t] such that i f {A) , f { B ) , / ( C ) ) € r ( A ) for all given { A J 3 , C ) e r ( A ) and ( / ( y l ) , / ( i i ) , / ( C ) ) G G o (A ) lor all given (y4,Z?,C) G G o (A ) are o f the form / ( x ) = hx + ^ ( 1 - h), where ^ 6 1

Proof Note that two functions / ( x ) = X and /(.x) = ^ arc solutions

We determine llie general solution / ( : r ) in [0, 7t] with

ĩ { x ) + f { y ) + /( t t - X - y) = 7T, V x , y e [ 0 , 7r],x' + y ^ 7T.

/ ( x ) > 0, Vx e (0, 7t)

(C)

l.et y = 0, then

/ ( x ) + / ( 0 ) + / (tt - x) = 7T, V x e [ 0 , 7T or

/ ( t t - x ) 7T - / ( 0 ) - / ( x ) , V x e [0, Tĩ'

Putting / (tt — x) = 7t — / ( 0 ) — / ( x ) into (6), we find

X + g [ x ) + y + g { y ) + 7T - ( x + y ) g { n - { x + y ) ) = 7T, V x ,y G [0, 7t], X + y ^ 7T

or

/ ( x + y) + / ( 0 ) = / ( x ) + / ( y ) , V x ,y € [0,7t] ,x + ? / ^ 7T (7)

Putting / ( x ) = / ( 0 ) + g[ x ) ^ 0 Then g[ x) is additive in [0,7t] and (7) is o f the form

g { x + y) = g{ x) + g { y ) , Vx, y e [0, 7t], X-+ y ^ 7T (8)

Since g { x ) is additive in [Q,7t] and g{ x) ^ / ( 0 ) then (6) has the general solution o f the form / ( x ) =

3

Since g { x ) is additive in [Q,7t] and g{ x) ^ / ( 0 ) then (6) has the general solution o f the form / ( x ) —

bx + Ị3, where hx + (3 ^ Q for all X € [0, tt] That follows / ( x ) is o f the form f { x ) =: ÒX + ^ ( 1 - 6),

Trang 4

2 On the general solution o f functional equations induced by side lengths o f triangles

Let F ( A ) be the set o f all triples o f positive numbers (a, 6, c) such that

b - c\ < a < b c ,

i.e every triple (a, 6, c) G F ( A ) forms a triangle / \ A D C with its side lengths being a, 6, c.

To determine the general solution f [ x ) in [0, 1] such that / ( a ) , /(fc), / ( c ) form 3 side lengths

of a triangle for all given Ò A D C we need some additional discussions:

In the plane, consider the cirle o with diameter length 1 (unique circle) Denote by A /( A ) the set

o f all triangles inscribed in the cirle o Note that, if / is a solution o f Problem 2 then F { x ) = Ằ /(x )

with any A > Oj also satisfies Problem 2 and conversely So it enough to exam ine the Problem 2 in the case when the triples o f positive numbers ( a , 6 , c) being the side lengths o f triangles in M ( A ) The sine theorem follows that a necessary and sufficient condition for three positive numbers

a , /3, 7 to be 3 angles o f a triangle in A /(A ) are sin a , sin/3, SÌ117 form 3 side lengths o f a triangle in

A /(A )

Indeed, if a , /3,7 are 3 angles o f a triangle in A /(A ) then 2 R s i n a , 2/ỈSÍI1/9, 2 7 ? s in 7 or s i n a ,

sin/?, sin 7 are 3 side lengths o f a triangle inscribed in the cirle o with diam eter length 1

Conversely, if sill tt, s i n /3, sill 7 are 3 side lengths o f a triangle inscribed in the cirle o with diameter length 1 and a , p , 7 are positive t hen Q, /3, 7 form 3 angles o f a triangle

Firstly, we formulate propositions for some simple specialized cases

Proposition 2.1 T he function f { x ) X + a possesses the property that ( / ( a ) , f { b ) , / ( c ) ) 6 F { A )

for all (a, Ò, c) € F ( A ) ift' a ^ 0

Proposition 2.2 T he function f { x ) a x possesses the property that / ( a ) , are side lengths

o f a triangle for all (a, Ò, c) e F { A ) iff Q > 0.

Proposition 2.3 The function f { x ) = a x + p possesses the property that / ( a ) , f { b ) , f { c ) are side lengths o f a triangle for all (a, b, c) e F { A ) iff a ^ 0, p ĩi 0 and a + p > 0.

Proposition 2.4 The function / ( x ) = — r possesses the property that / ( a ) , f { b ) , f { c ) are side

QX + p

lengths o f a triangle for all (a, b, c) E F { A ) iff Q = 0, p > 0.

Now we deal with the set A i { A ) , i e the set o f all triangles inscribed in the cirle o with

diameter length 1

Theorem 2.1 A ny function / : [0,1] ^ [0,1] such that { f { a ) , f { b ) , f { c ) ) e M { A ) for all (a, b, c) e M ( A ) is o f the form

/ ( x ) = s i n a r c s i n x + ^ Of ^ 1 ( 9 )

88 N.v M au / VNU Journal o f Science, M aihem aiics - P hysics 27 ( 2 0 Ỉ Ỉ ) 85-89

Trang 5

Proof Note that, if a-,/i, 7 are 3 angles o f a triangle in A / ( A ) then 2 /? s in Q , 2 /? siu /3 , 2 / ? s i n 7 or

sin a , r ni i i , sill 7 are 3 side lengths o f a triangle inscribed in the cirle o wi th di ameter length 1.

Conversely, if sin a , s in /i, sin 7 are 3 side lengths o f a triangle inscribed in the cirle o with

diameter lengtli 1 and arc positive then Q, /9, 7 form 3 angles o f a triangle

On the other hand, by theorem th m l, all functions f { x ) defined in [0,7t] such that i f {A), f { B ) , / ( C ) ) G r ( A ) for all given { A , D , C ) e r ( ^ ) and ( / ( / 1 ) , f { D ) , / ( C ) ) e G(,(A) for all given [ A , D , C ) € G o (A ) are o f the form f { x ) = bx + ^ ( 1 - b), where - - ^ 6 ^ 1

Hence, ihc general solution is o f the form (10)

N o w we f or mu la te the main result

TheoTcm 2.2 A ny function / : K+ ^ R + such that ( / ( a ) , / ( ^ ) , / ( c ) ) G F { A ) for all { u, b, c) e

/■"(A) is o f the form

f { x ) = ' i i s i i i ( r t a r c s i n { x | + - 7: ^ a ^ 1- (1 ^ ) )

Proof Applying the above additional discussion and tlieorem , it is easy to obtain the form (10).

R e m a r k 1 Some other types o f functional equations in geometry were considered firstly by s, Galab

[4]

4

References

[ 1 1 T A c/.e'l, L e c tu r e s o n J u n c tio n a l e q u a tio n s a n d th e ir a p p lic a tio n s A c a d c m i c Press, N e w Yorkysan lT ancisco/Londt>n,

m l 966.

[2] M K.uc/.ina, B C h o c z e w s k i , R Gcr ỉn te r a tiv e h u n c tio n a l E q u a tio n s , C a m b r i d g e U nivers ity Press, CLiinbridgc/Ncw

York/Port C h c s lc r /M e l b o u m e / S y d n c y , Í990.

[3] l^K S a h o o , T R icdcL M e a n Value T h e o re m s a n d F u n c tio n a l liq u a tio n s , World Scienlific, Singapore/N cvv Jcr-

s e y / L o n d o n / I I o n g K o n g , 1998.

[4] S G a la b , F u n c lio n c d e q iia iio n s in g e o m e try , Prace M aL , N o C C X X I I l , Z c s / y l 14, 1969.

Ngày đăng: 14/12/2017, 14:53

TỪ KHÓA LIÊN QUAN