1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Weak expansiveness for actions of sofic groups

32 168 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 1,37 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Contents lists available at ScienceDirectJournal of Functional Analysiswww.elsevier.com/locate/jfa Weak expansiveness for actions of sofic groups Nhan-Phu Chunga, ∗, Guohua Zhangb aDepart

Trang 1

Contents lists available at ScienceDirectJournal of Functional Analysis

www.elsevier.com/locate/jfa

Weak expansiveness for actions of sofic groups

Nhan-Phu Chunga, ∗, Guohua Zhangb

aDepartment of Mathematics, University of Sciences, Vietnam National

University at Ho Chi Minh City, Viet Nam

b

School of Mathematical Sciences and LMNS, Fudan University and Shanghai

Center for Mathematical Sciences, Shanghai 200433, China

Measures with maximal entropy

In this paper, we shall introduceh-expansivenessand toticalh-expansivenessfor actions of sofic groups By defini- tion, each h-expansiveaction of a sofic group is asymptoti- callyh-expansive.We show that each expansive action of a sofic group ish-expansive,and, for any given asymptotically

asymp-h-expansiveaction of a sofic group, the entropy function (with respect to measures) is upper semi-continuous and hence the system admits a measure with maximal entropy.

Observe that asymptotically h-expansive property was first introduced and studied by Misiurewicz for Z-actions using the language of tail entropy And thus in the remaining part of the paper, we shall compare our definitions of weak expansiveness for actions of sofic groups with the definitions given in the same spirit of Misiurewicz’s ideas when the group is amenable.

It turns out that these two definitions are equivalent in this setting.

© 2014 Elsevier Inc All rights reserved.

Trang 2

of a countable discrete sofic group admitting a generating measurable partition withfinite entropy[7,9] The main idea hereis to replace theimportant Følner sequence of

a countable discrete amenable group with a sofic approximation for a countable cretesofic group.Verysoonafter[7],inthespiritofL Bowen’ssoficmeasure-theoreticentropy, Kerrand Lidevelopedan operator-algebraicapproachto sofic entropy[32,34]

dis-which appliesnotonlytocontinuous actionsofcountablediscrete soficgroupsonpact metricspacesbutalso toallmeasure-preservingactionsofcountablediscretesoficgroups on standard probability measure spaces From then on, there are many otherpapers, presenting different but equivalent definitions of sofic entropy [31,50], extend-ing soficentropyto sofic pressure[14] andto sofic meandimension[35], anddiscussingcombinatorialindependenceforactionsofsofic groups[33]

com-Let X beacompact metricspace Any homeomorphismT : X → X generates urally atopological dynamicalsystem byconsideringthe group{T n : n ∈ Z}. EveninthecasethegivenmapT : X → X isjustacontinuousmap(maybenon-invertible),westillcallitatopologicaldynamicalsystembyconsideringthesemi-group{T n : n ∈ Z+}.

nat-A self-homeomorphismofacompactmetricspaceisexpansive if,foreachpairofdistinctpoints,someiterateofthehomeomorphismseparatesthembyadefiniteamount.Expan-sivenessisinfactamultifaceteddynamicalconditionwhichplaysaveryimportantroleintheexploitationofhyperbolicityinsmoothdynamicalsystems[39].Inthesettingofcon-sideringacontinuousmappingoveracompactmetricspace,two classesofweakexpan-siveness,theh-expansivenessandasymptoticalh-expansiveness,wereintroducedbyRu-fusBowen[6]andMisiurewicz[40],respectively.Bydefinition,eachh-expansivesystemisasymptotically h-expansive.Both ofh-expansiveness and asymptoticalh-expansiveness

turn outtobeimportantinthestudyofsmoothdynamicalsystems[12,18,21,22,37]

It isdirectto defineexpansivenessfor actionsofgroups.Thatis,letG be adiscretegroupactingonacompactmetricspaceX (withthemetricρ),thenwesaythat(X, G)

is expansive if there is δ > 0 such that for any two different points x1 and x2 in X

there exists g ∈ G with ρ(gx1, gx2) > δ. Such a δ is called an expansive constant.

Symbolic systemsarestandard examplesforexpansive actions Thisobvious extension

of the notion of expansiveness has been investigated extensively in algebraic actionsfor Zd [24,38,44,45] and for moregeneral groups[8,15,17]; and ageneral framework ofdynamics ofd ∈ N commuting homeomorphismsoveracompactmetricspace,interms

of expansive behavior along lower dimensional subspacesof Rd, was first proposed byBoyle andLind[11]

Trang 3

Now,anaturalquestionrises:how to defineweakexpansivenessusing entropyniqueswhenconsideringactionsofcountablesoficgroups?

tech-The problem is addressed in this paper When considering a continuous mappingoveracompactmetricspace,R Bowenintroducedh-expansivenessusingseparatedandspanningsubsetsbyconsideringtopologicalentropyofspecialsubsets[6],andthenMisi-urewiczintroducedasymptoticalh-expansiveness,whichisweakerthanh-expansiveness,

using open covers by introducing tailentropy [40] Observe thatthe notion of tailtropywasfirstintroducedbyMisiurewiczin[40]wherehecalledittopologicalconditionalentropy,and thenBuzzicalled thisquantitylocal entropyin[13].Here,wefollowDow-narowicz and Serafin [23] and Downarowicz[20] It was Li who first used open coversforactionsofsoficgroupstoconsidersofic meandimension[35],andthenthis ideawasused in[50] to consider equivalently the entropyfor actions ofsofic groups.To fix theproblem of defining weak expansiveness naturally for actions of sofic groups, we shalluseopen covers againto introduce thepropertiesof h-expansiveness and asymptotical

en-h-expansiveness inthe spirit of Misiurewicz [40] The idea turns out to be successful.From definitioneachh-expansiveaction ofasofic groupis asymptoticallyh-expansive;

weshallprovethateachexpansiveactionofasoficgroupish-expansive(Theorem 3.1),andhence, h-expansivenessand asymptoticalh-expansiveness areindeedtwo classesofweakexpansiveness.Additionally,similartothesettingofconsideringacontinuousmap-pingover acompact metricspace,forany givenasymptoticallyh-expansiveactionofasofic group, the entropy function (with respect to measures) is upper semi-continuous(Theorem 3.5)andhencethesystemadmits ameasure withmaximalentropy

Observethattheasymptoticallyh-expansivepropertywasfirstintroducedandstudied

byMisiurewiczforZ-actionsusingthelanguageoftailentropy.Wecandefinetailentropyfor actions of amenable groupsin the same spirit, and so it is quite natural to ask if

wecould defineasymptotical h-expansiveness foractionsof amenablegroupsalongtheline of tail entropy The answer turns out to be true, that is, our definitions of weakexpansiveness for actions of sofic groups are equivalent to the definitions given in thesame spirit of Misiurewicz’s ideas of using tail entropy when the group is amenable(Theorem 6.1) In [40] Misiurewicz provided a typical example of an asymptotically

h-expansivesystem, thatis, any continuous endomorphism of acompact metricgroupwithfiniteentropyisasymptoticallyh-expansive.Weshallshowthatinfactthisholdsin

amoregeneralsettingwiththehelpofTheorem 6.1,precisely,anyactionofacountablediscreteamenablegroupactingonacompactmetricgroupbycontinuousautomorphisms

isasymptoticallyh-expansiveifandonlyiftheactionhasfiniteentropy(Theorem 7.1).Thepaperisorganizedasfollows.InSection2weprovethateachexpansiveactionofasoficgroupadmitsameasurewithmaximalentropybasedonthesoficmeasure-theoreticentropy introduced in [7] In Section 3 we introduce h-expansive and asymptotically

h-expansiveactionsofsoficgroupsinthespiritofMisiurewicz[40].Eachh-expansivetionofasoficgroupisasymptoticallyh-expansivebythedefinitions.Weshowthateachexpansive action of a sofic group is h-expansive, and each asymptotically h-expansive

ac-action of a sofic group admits a measure with maximal entropy (in fact, its entropy

Trang 4

function is upper semi-continuous with respect to measures) In Section 4 we presentourfirstinterestingnon-trivialexampleof anh-expansiveactionof asofic groupwhich

is infact theprofinite actionof acountable group.In order to understandfurtherourintroduced weak expansiveness for actions of sofic groups in the setting of amenablegroups, inSection5we define tailentropy foractions of amenablegroupsinthe samespirit ofMisiurewicz AndtheninSection6wecompareourdefinitionsofweakexpan-sivenessforactionsofsoficgroupswiththedefinitionsgiveninSection5whenthegroup

is amenable It turns outthatthese two definitions areequivalent inthis setting AndtheninSection7weshowthatanyactionofacountablediscreteamenablegroupacting

onacompactmetricgroupbycontinuousautomorphismsisasymptoticallyh-expansive

ifandonlyiftheactionhasfiniteentropy

2 Expansiveactionsofsoficgroups

Let G beacountablediscrete group.Foreach d ∈ N, denoteby Sym(d) thetation groupof{1, · · · , d }.WesaythatG is sofic ifthere isasequenceΣ = {σ i : G →

permu-Sym(d i ), g → σ i,g , d i ∈ N} i ∈N suchthat

d ia ∈ {1, · · · , d i } : σ i,s (a) = σ i,t (a)= 1 for all distinct s, t ∈ G.

Here,by| • | wemeanthecardinalityofaset•.SuchasequenceΣ withlimi→∞ d i =

is referred as a sofic approximation of G. Observethat the condition limi→∞ d i =

is essential for the variational principle concerning entropy of actions of sofic groups(see [32] and [50] forthe globaland local variationalprinciples, respectively),and itisautomaticifG isinfinite

Throughout the paper, G will be a countable discrete sofic group, with a fixed sofic approximation Σ as above and G acts on a compact metric space (X, ρ).

In this section, based on the sofic measure-theoretic entropy introduced in [7], wemainlyprovethat,foranexpansiveactionofasoficgroup,theentropyfunctionisuppersemi-continuous withrespect tomeasures,andhencetheactionadmitsameasure withmaximal entropy.Additionally,weshow thatingeneraltheentropyfunctionofafiniteopen coverisalsouppersemi-continuouswithrespect tomeasures

Denote byM (X) thesetof allBorelprobabilitymeasuresonX,whichisacompactmetric spaceifendowed with thewell-knownweakstar topology;and byM (X, G) the

set ofallG-invariantelements μ in M (X),i.e.,μ(A) = μ(g −1 A) for eachg ∈ G andall

A ∈ B X, whereBX is theBorelσ-algebraof X.NotethatifM (X, G) = ∅ then itis acompact metricspace

Trang 5

ForasetY ,wedenotebyFY thesetofallnon-emptyfinitesubsetsofY Byacover

ofX wemeanafamilyofsubsetsofX withthewholespaceasitsunion.Ifelements of

acoverarepairwisedisjoint,thenitiscalledapartition.DenotebyCX ,Co

Throughout the whole paper, we shall fix the conventionlog 0=−∞.

Nowwerecallthesoficmeasure-theoreticentropyintroducedin[7,§2]

Let α = {A1, · · · , A k } ∈ P X , k ∈ N and σ : G → Sym(d), d ∈ N, and let ζ be

the uniform probability measure on {1, · · · , d } and β = {B1, · · · , B k } a partition of

{1, · · · , d }. Assumeμ ∈ M(X, G). For F ∈ F G, we denote by Map(F, k) the set of allfunctionsφ : F → N suchthatφ(f ) ≤ k forallf ∈ F ,andweset

d F (α, β) = 

φ∈Map(F,k)

μ(A φ)− ζ(B φ),where

A φ= 

f∈F

f −1 A φ(f ) and B φ= 

f∈F σ(f ) −1 B φ(f ) for each φ ∈ Map(F, k).

Now for each ε > 0, let AP μ (σ, α : F, ε) (or just AP (σ, α : F, ε) if there is no anyambiguity)bethesetofallpartitionsβ = {B1, · · · , B k } of {1, · · · , d } with d F (α, β) ≤ ε.

Inparticular,|AP (σ, α : F, ε) | ≤ k d.Wedefine

ObservethatAP (σ i , α : F, ε) maybe empty,and inthe casethatAP (σ i , α : F, ε)=

foralllargeenoughi ∈ N wehaveH μ,Σ (α : F, ε)=−∞ bytheconventionlog 0=−∞.

Hence,h μ,Σ (α) maytakeavaluein[0,log|α|] ∪ {−∞}.

The main result of [7] tells us that, if there exists an α ∈ P X generating the

σ-algebraBX(inthesenseofμ)thenthequantityh μ,Σ (α) isindependentoftheselection

of such a partition, and this quantity, denoted by h μ,Σ (X, G), is called the theoretic μ-entropy of (X, G). Indeed,L Bowen defined themeasure-theoretic entropy

measure-inamoregeneralcasewhen theaction admits agenerating partitionβ (notnecessaryfinite) with finite Shannon entropy [7] We say that the partition β ⊂ B X generates the σ-algebra BX (in the sense of μ) if foreach B ∈ B X there exists A ∈ A suchthat

μ(AΔB) = 0,whereA isthesmallestG-invariant sub-σ-algebra ofBX containingβ.

Trang 6

Observethat,foranexpansiveaction(X, G) ofasoficgroupwithanexpansivestant δ > 0, if ξ ∈ P X satisfies diam(ξ) < δ, where diam(ξ) denotes the maximaldiameterofsubsetsinξ, then,foreachμ ∈ M(X, G) (if M (X, G) = ∅), ξ generates BX

con-[46, Theorem 5.25],andso thequantityh μ,Σ (X, G) iswelldefined

For technical reasons for r1, r2∈ [−∞, ∞] we set r1+ r2=−∞ by convention in the case that either r1=−∞ or r2=−∞, and for r1, r2∈ (−∞, ∞] we set r1+ r2=∞ by convention in the case that either r1=∞ or r2=∞.

We say that a function f : Y → [−∞, ∞) defined over a compact metric space Y

is upper semi-continuous if lim supy  →y f (y ) ≤ f(y) for each y ∈ Y The followingresultshowsthateachexpansiveactionofasoficgroupadmitsameasurewithmaximalentropy

Theorem 2.1 Let (X, G) be an expansive action of a sofic group with M (X, G) = ∅ Then h •,Σ (X, G) : M (X, G) → [0, ∞) ∪ {−∞} is an upper semi-continuous function.

Proof The proofisinspiredby[46,Theorem 8.2]

Letδ > 0 beanexpansiveconstantfor(X, G) and ξ ∈ P X withdiam(ξ) < δ.Thenξ

generatesBX andso h μ,Σ (X, G) ∈ [0,log|ξ|] ∪ {−∞} foreachμ ∈ M(X, G).

Now fix η > 0 and μ ∈ M(X, G). It suffices to find an open set U ⊂ M(X, G)

containingμ suchthath ν,Σ (X, G) ≤ h μ,Σ (X, G) + η foreachν ∈ U.

We chooseF ∈ F G and ε > 0 such thatH μ,Σ (ξ : F, 2ε) ≤ h μ,Σ (X, G) + η.Say ξ = {A1, · · · , A k } and let0< ε1 < 2M ε2 with M = | Map(F, k) | = k |F | Letφ ∈ Map(F, k).

Since μ isregular,thereexists acompactset K φ ⊂ A φ withμ(A φ \ K φ)< ε1,andthenforeachi = 1, · · · , k we define

by the construction of ξ , and so using Urysohn’s Lemma we can chooseu φ ∈ C(X),

where C(X) denotes the set of all real-valued continuous functions over X, with 0

u φ ≤ 1 whichequals 1onK φ andvanishesonX \ int(A 

φ).Set

U =

ν ∈ M(X, G) :ν(u )− μ(u )< ε for all φ ∈ Map(F, k)

Trang 7

which is an open set of M (X, G) containing μ. Let ν ∈ U. Then ν(A  φ) ≥ ν(u φ) > μ(u φ)− ε1 ≥ μ(K φ)− ε1 and hence μ(A φ)− ν(A 

φ) < 2ε1 for each φ ∈ Map(F, k).

Observe {A φ : φ ∈ Map(F, k) } ∈ P X and {A 

φ : φ ∈ Map(F, k) } ∈ P X Note that if

p1, · · · , p m , q1, · · · , q m , c arenonnegative realnumberswith m ∈ N suchthat m

i=1 p i = m

i=1 q i= 1 andp j − q j < c foreachj = 1, · · · , m then

As diam(ξ ) < δ, ξ  ∈ P X generates BX by the construction of δ, and so we get

h ν,Σ (X, G) ≤ h μ,Σ (X, G) + η foreachν ∈ U as desired.Thisfinishestheproof 2

InthespiritofL.Bowen’sentropyasabove,KerrandLiintroducedalternativelythesoficmeasure-theoreticentropy[32,34]as follows

Let(Y, ρ) beametricspaceandε > 0. A set∅ = A ⊂ Y issaidtobe(ρ, ε)-separated

if ρ(x, y) ≥ ε for all distinct x, y ∈ A. We write N ε (Y, ρ) for the maximal cardinality

offinite non-empty (ρ, ε)-separated subsets ofY (and set N ε(∅, ρ)= 0 by convention)

A basic factisthatif ∅ = A ⊂ Y is amaximal finite (ρ, ε)-separated subsetof Y then

foreachy ∈ Y thereexists x ∈ A such thatρ(x, y) < ε.

Foreachd ∈ N and (x1, · · · , x d ), (x 1, · · · , x  d)∈ X d,weset

Trang 8

By [34, Proposition 3.4] the measure-theoretic μ-entropy of (X, G) can be defined as(recallingtheconventionlog 0=−∞)

.

The sofic measure-theoretic entropy can be defined equivalently using finite opencoversasfollows[50,§2].WeremarkthatitwasLiwhofirstusedopencoversforactions

of soficgroupsto considersofic meandimensionin[35]

For U ∈ C X and d ∈ N,we denote by Ud thefinite Borel cover of X d consisting of

U1× U2× · · · × U d,whereU1, · · · , U d ∈ U.LetU∈ C X,weset (recallingtheconventionlog 0=−∞)

In particular, h F,δ,μ,L (G,U) takes the value −∞ if X F,δ,σi,μ,L di = ∅ for all i ∈ N large

enough.Now wedefinethemeasure-theoretic μ-entropy of U as

h μ (G,U) = inf

L ∈FC(X) Finf∈FG δ>0inf h F,δ,μ,L (G, U) ≤ log N(U, X).

It isnothard tocheckthat

h μ (G, X) = sup

U∈C o X

h μ (G, U).

Moreover, by theproof of [32, Theorem 6.1], itwas provedimplicitly h μ (G, X) =−∞

(and henceh μ (G,U)=−∞ forallU∈ C o

X)foreachμ ∈ M(X) \ M(X, G).

Observethatbothofh μ (G,U) andh μ (G, X) maytakethevalueof−∞,andby[32,34] ifμ ∈ M(X, G) andBX admitsageneratingpartition(inthesense ofμ)withfiniteShannonentropythenh μ (G, X) isjustthequantityh μ,Σ (X, G) introducedbefore.Thefollowing resultiseasyto obtain:

Proposition 2.2 LetU∈ C o

X Then h • (G,U): M (X) → [0, log N ( U, X)] ∪ {−∞} is an upper semi-continuous function.

Proof Letμ ∈ M(X).Foranyε > 0 wemaychooseL ∈ F C(X) , F ∈ F G andδ > 0 such

thath F,2δ,μ,L (G,U)≤ h μ (G,U)+ ε. Nowweconsiderthenon-emptyopenset

μ ∈ V =ν ∈ M(X) :ν(f ) − μ(f)< δ for all f ∈ L.

Then foreach ν ∈ V wehaveX d

F,δ,σ,ν,L ⊂ X d

F,2δ,σ,μ,Lfor eachσ : G → Sym(d), d ∈ N,

which impliesh ν (G,U)≤ h F,δ,ν,L (G,U)≤ h F,2δ,μ,L (G,U)≤ h μ (G,U)+ ε. Thisimpliesthattheconsideredfunctionisuppersemi-continuous 2

Trang 9

3 Weakexpansivenessforactionsofsofic groups

Notethat,whenconsideringacontinuousmappingoveracompactmetricspace,sincetheintroductionofh-expansivenessandasymptoticalh-expansiveness,bothofthemturnouttobe veryimportantclassesintheresearch areaofdynamical systems.Itisshown

by R Bowen [6] thatpositively expansivesystems, expansive homeomorphisms, morphisms ofa compactLie group and Axiom A diffeomorphisms areall h-expansive,

endo-byMisiurewicz [40] thateverycontinuousendomorphism ofacompact metricgroupisasymptoticallyh-expansive ifithas finite entropy,and byBuzzi [13] thatany C ∞ dif-feomorphismonacompactmanifoldisasymptoticallyh-expansive.Moreover,therearemorenice characterizations of asymptotical h-expansiveness obtained recently for thissetting.Forexample,atopologicaldynamicalsystemisasymptoticallyh-expansiveifandonlyifitadmitsaprincipalextension toasymbolicsystembyBoyleandDownarowicz

[10], i.e., a symbolic extension which preserves entropy for each invariant measure; ifandonlyifitishereditarilyuniformlylowerablebyHuang,Yeandthesecondauthorofthepresent paper [28] (for adetaileddefinitionof the hereditarilyuniformly lowerablepropertyanditsstorysee [28])

Inthissectionweexploresimilarweakexpansivenessforactionsofsoficgroups

By[34, Proposition 2.4]thetopological entropy of (X, G) canbedefinedas

,

which is introduced and discussed in [32,34] Before proceeding, we need to recall thetopological entropy for actions of sofic groups introduced in [50, §2] using finite opencovers.LetU∈ C X.ForF ∈ F G and δ > 0 weset

Observeagainthath F,δ (G,U) takesthevalueof−∞ whenever X F,δ,σi di =∅ foralli ∈ N

largeenough.Now wedefinethetopological entropy of U as

h(G,U) = inf

F ∈FG δ>0inf h F,δ (G, U) ≤ log N(U, X).

Itisnothardtocheck that

h(G, X) = sup

U∈C o X h(G, U).

Observethatbothof h(G,U) andh(G, X) maytakethevalueof−∞.

Thesofictopologicalentropyandsofic measure-theoreticentropyarerelatedtoeachother[32,Theorem 6.1]and[50, Theorem 4.1]:forU∈ C o,

Trang 10

h(G, X) = sup

μ∈M(X,G) h μ (G, X) and h(G,U) = max

μ∈M(X,G) h μ (G, U), (3.1)

where intheright-handsidesasabovewesetitto −∞ byconventionifM (X, G)=∅.

In thespirit of Misiurewicz [40], the aboveideacan be used to introduce

h-expans-iveness and asymptotical h-expansiveness for actionsof sofic groups.Let U1,U2 ∈ C X.ForF ∈ F G andδ > 0 weset

h ∗ (G, X) = inf

U 2∈C o X h(G, X |U2)≤ h(G, X).

Then h(G, X |{X}) = h(G, X) by the definitions Wesay that(X, G) is h-expansive if h(G, X |U) ≤ 0 forsomeU∈ C o

X,and asymptotically h-expansive if h ∗ (G, X) ≤ 0.

Each h-expansiveactionofasofic groupis asymptoticallyh-expansivebydefinition.The next result shows that each expansive action of asofic group is h-expansive,andthus thesetwokindsofexpansivenessareindeedweakexpansiveness

Theorem3.1.Let (X, G) be an expansive action of a sofic group with κ > 0 an expansive constant andU∈ C X Assume that diam(U)≤ cκ for some c < 1 Then h(G, X |U) ≤ 0.

Proof Let V∈ C o

X and ε > 0.It sufficestoprovethath(G, V|U) ≤ ε.

Let τ > 0 be a Lebesgue number of V As (X, G) is an expansive action of a soficgroup with κ > 0 an expansive constant, it is not hard to choose F ∈ F G such thatmaxs ∈F ρ(sx, sx )< κ implies ρ(x, x )< τ2 (forexamplesee[46,Chapter 5, §5.6]).Nowletδ > 0 besmall enoughsuchthat

|Θ d | · |V|(18δ2 −c)2κ2 |F | ·d < e εd (3.2)foralld ∈ N largeenough,whereΘ d isthesetofallsubsetsθ of {1, · · · , d } with

Trang 11

F,δ,σ ∩ V (if it is not empty) For any

(x 1, · · · , x  d)∈ X d

F,δ,σ ∩ V ,applying (3.3)to(x1, · · · , x d) and (x 1, · · · , x  d) and observing

ρ(sx i , sx  i)≤ ρ(sx i , x σs (i))+ ρ(x σs (i) , x  σs (i))+ ρ(sx  i , x  σs (i)),itiseasytosee

Inotherwords,ifweassociate eachθ ∈ Θ d withX d

F,δ,σ,V,θ, thesetofall(x 1, · · · , x  d) in

andhenceh(G, V|U) ≤ ε bythedefinition,finishingtheproof 2

Observingthat,forV1,V2∈ C X andK ⊂ X,

N (V1, K) ≤ N(V2, K) · max

V ∈V2

N (V1, K ∩ V ), (3.5)

itisdirectto obtainthefollowing easywhileusefulobservation

Lemma3.2 LetU1,U2∈ C X and μ ∈ M(X) Then

h μ (G,U1)≤ h μ (G,U2) + h(G,U1|U2) and h μ (G, X) ≤ h μ (G,U2) + h(G, X |U2),

h(G,U )≤ h(G, U ) + h(G,U |U ) and h(G, X) ≤ h(G, U ) + h(G, X |U ).

Trang 12

Proof Let {F n : n ∈ N} ⊂ F G increase to thewhole group G and {δ n > 0 : n ∈ N}

decrease to0.Bythedefinitionsitisdirectto see

h μ (G,U) = inf

L ∈FC(X) nlim→∞ h Fn,δn,μ,L (G,U)foreachU∈ C X and

par-h(G, X |U2)=∞ (recallingourtechnicalconventionof−∞+=−∞).Theremainingitems canbeprovedsimilarly 2

As directcorollaries,wehave:

Corollary 3.3 h ∗ (G, X) < ∞ if and only if h(G, X) < ∞, and h ∗ (G, X)=−∞ if and only if h(G, X)=−∞.

Corollary 3.4.Assume that (X, G) is h-expansive Then there existsU∈ C o

X with h(G, X) = h(G, U) and h μ (G, X) = h μ (G, U) for each μ ∈ M(X).

Moreover, wecanprovethefollowingresult

Theorem 3.5.Let μ ∈ M(X) Then

Trang 13

Now we assume that (X, G) is asymptotically h-expansive, that is, h ∗ (G, X) ≤ 0.

Thenh(G, X) < ∞ byCorollary 3.3,andhenceh η (G, X) ∈ [0, ∞) ∪ {−∞} foreachη ∈

M (X) by(3.1)(recallingthefactthath η (G, X)=−∞ foreachη ∈ M(X) \ M(X, G)).

Moreover,using(3.6)weobtain

lim sup

ν→μ h ν (G, X) ≤ h μ (G, X) + h ∗ (G, X) ≤ h μ (G, X)

fromourtechnicalconvention.Thisfinishestheproof 2

Remark 3.6 As a direct corollary of Theorem 3.5, we have: if the action (X, G) is

asymptotically h-expansive then both of its sofic topological mean dimension and itssoficmetricmeandimensionwithrespecttoanycompatiblemetricareatmostzero[35,Proposition 4.3andTheorem 6.1].Forthedefinitionofsofictopologicalmeandimensionandsoficmetricmeandimensionsee[35, §2and §4],respectively

CombiningTheorem 3.5with(3.1)onehas:

Corollary3.7.Each asymptotically h-expansive action of a sofic group admits a measure with maximal entropy.

Ingeneral,theconversedoesnothold,forexample,anyZ-actionwithinfiniteentropyadmits a measure with infiniteentropy, whereas, it is not asymptotically h-expansive.

Furthermore,[40,Example6.4]showsusaZ-actionwithfiniteentropysuchthatitisnotasymptoticallyh-expansive,whileeachinvariantmeasurehasmaximalentropy.Observethat,asweshallshowlater,thedefinitionsofweakexpansivenessgivenhereforactions

ofsoficgroupsareequivalenttodefinitionsgiveninthesamespiritofMisiurewicz’sideaswhenthegroupisamenable

Remark3.8 Theorem 2.1isaconsequenceof Theorem 3.1andTheorem 3.5

4 Profiniteactions

Inthissectionweprovideourfirstinterestingnon-trivialh-expansiveactionofasoficgroupusing thelanguageoftheprofiniteaction

Recallthattheaction(X, G) is distal ifinfg ∈G ρ(gx, gy) > 0 foralldistinctx, y ∈ X,

and equicontinuous if for each δ > 0 there exists ε > 0 such that ρ(x, y) ≤ ε implies ρ(gx, gy) ≤ δ forallg ∈ G.

Thefollowingresultshouldbe known,we providehereaproofforcompleteness.Lemma 4.1 Assume that the action (X, G) is equicontinuous Then it is distal And if additionally X is infinite then it is not expansive.

Trang 14

Proof First weprovethat(X, G) isdistal Else,there exist distinct points x1, x2 ∈ X

with infg ∈G ρ(gx1, gx2)= 0 As (X, G) is equicontinuous, there exists ε > 0 such that

ρ(x, y) < ε implies ρ(gx, gy) ≤ 1

2ρ(x1, x2) for each g ∈ G. Let g  ∈ G be such that

ρ(g  x1, g  x2) < ε. Then 0 < ρ(x1, x2) = ρ((g )−1 g  x1, (g )−1 g  x2) 1

2ρ(x1, x2) by theselectionofε, acontradiction

NowadditionallyweassumethatX isinfinite.If(X, G) isexpansive,thenthereexists

δ > 0 withsupg ∈G ρ(gx, gy) > δ foralldistinctx, y ∈ X.Usingagaintheequicontinuity

of (X, G), we could choose ε  > 0 such that ρ(x, y) < ε  implies ρ(gx, gy) ≤ δ for

each g ∈ G. As X isinfinite, bythecompactness ofX we couldchoose distinctpoints

y1, y2 ∈ X with ρ(y1, y2) < ε , acontradiction to theselection of δ. That is, (X, G) is

notexpansive,finishingtheproof 2

See[3]foramoredetailedstoryofdistalactionsandequicontinuousactions

Observethat,bydefinitioneachactionof asofic groupish-expansiveifithaslogical entropyat most zero,and Kerr and Liprovedthat eachdistal actionof asoficgroup has topological entropy at most zero [33, Corollary 8.5] Note that [33, Corol-lary 8.5]isstatedforthesofictopologicalentropydefinedusingultrafilter.However,thelimsup versionof itfollows directlyfromthe ultrafilterversion, sinceonecanpassto asubsequence where thequantity converges and thenone canuseany free ultrafilteronthis subsequence.Thuseachdistalactionofasoficgroupish-expansive.Withthehelp

topo-of thisobservation,wecanprovide ourfirstinterestingh-expansiveexample

Let G be a countable group A chain of G is a sequence G = G0 ≥ G1 ≥ · · · of

subgroupswithfiniteindicesinG.Forachain(G n),wehaveatreestructureT (G, (G n))defined naturallyas follows Thevertices are {gG n : n ∈ N, g ∈ G} and (g1G n , g2G m)

is an edge ifm = n+ 1 and g2G m ⊂ g1G n The boundary∂T (G, (G n)) of T (G, (G n))consistsofallsequences(x0, x1, · · ·) ofverticeswithx nadjacenttox n+1foreachn ∈ Z+.Then ∂T (G, (G n)) isacompactmetrizable spaceendowedwiththetopologygenerated

by theopenbasis consistingof allsubsetsO x={(x0, x1, · · ·) ∈ ∂T (G, (G n)): x N = x }

withx ∈ G/G NandN ∈ Z+.ThenaturalleftactionsofG on G/G ninducetheprofinite action (∂T (G, (G n )), G),anactionofG on ∂T (G, (G n)) byhomeomorphisms.Inthiscasethe profiniteaction(∂T (G, (G n )), G) isequicontinuous, sinceforanyx = gG n ∈ G/G n

and h ∈ G we havehO x = O y with y = hgG n ∈ G/G n

Combining withtheabovediscussions, weobtain:

Proposition 4.2 Let G be a countable sofic group and (G n ) a chain of G Then the profinite action of G on ∂T (G, (G n )) is h-expansive Furthermore if ∂T (G, (G n )) of

T (G, (G n )) is infinite then the action is not expansive.

Dynamicalpropertiesofprofiniteactionshavebeenstudiedextensivelyforresiduallyfinite groups in[1,2] They were also used to investigate orbit equivalence rigidityforKazhdan property(T) groups[30,42]

Trang 15

5 Tailentropyforactionsofcountablediscreteamenablegroups

In this section we shall introduce tail entropy for actions of countable discreteamenablegroupsinthesamespiritofMisiurewicz

RecallthatG isacountable discretegroup.Denote bye G theunitof G G iscalled

amenable,ifthere exists asequence {F n : n ∈ N} ⊂ F G,called aFølner sequence of G,

of G,thenF n = G once n islargeenough

Throughout this section and the next, we will assume that G is always a countable discrete amenable group.

Thewell-known Ornstein–Weiss Lemmaplays acrucial role inthe study ofentropytheoryforactionsofamenablegroups[41](seealso[19,29,43,49,47]).Thefollowingver-sionofitistakenfrom[27, 1.3.1]

Proposition5.1 Let f : F G → R be a nonnegative function such that f (Eg) = f (E) and

f (E ∪ F ) ≤ f(E) + f (F ) for all E, F ∈ F G and g ∈ G Then for any Følner sequence {F n : n ∈ N} of G the sequence { f (Fn)

|Fn| : n ∈ N} converges and the value of the limit is independent of the selection of the Følner sequence {F n : n ∈ N}.

LetW1,W2∈ C X.IfeachelementofW1iscontainedinsomeelementofW2 thenwesaythatW1 is finer than W2 (denotedbyW1  W2 or W2 W1).ThejoinW1∨ W2

isgivenbyW1∨ W2={W1∩ W2: W1∈ W1, W2∈ W2} ∈ C X, whichextendsnaturally

toafinite collectionof covers.LetF ∈ F G,weset (W1)F =

g∈F g −1W1,andthen weconsideranonnegativefunctionmW1,W2 : FG → R givenby

mW1,W2(F ) = max

K∈(W2 )F

log N (W1)F , K

for each F ∈ F G

Itiseasytoobtainthefollowingusefulobservation

Lemma5.2 mW1,W 2(E ∪ F ) ≤ mW 1,W 2(E) + mW1,W 2(F ) for all E, F ∈ F G

Proof Let E, F ∈ F G From the definition we choose K ∈ (W2)E∪F with

mW1,W2(E ∪ F ) = log N ((W1)E∪F , K). Say K1 ∈ (W2)E and K2 ∈ (W2)F with

K = K1∩ K2 (no matter if E and F are disjoint), suchK1 and K2 must exist Now

Trang 16

let V1 ⊂ (W1)E cover K1 with |V1| = N ((W1)E , K1) and let V2 ⊂ (W1)F cover K2

with |V2| = N ((W1)F , K2) Obviously we can cover K1∩ K2 (i.e K) using the ily V1 ∨ V2 Observing that |V1∨ V2| ≤ |V1| · |V2| and each element of V1∨ V2 iscontained insome element of (W1)E∪F, we have that N ((W1)E∪F , K) ≤ |V1∨ V2| ≤

fam-N ((W1)E , K1)· N((W1)F , K2),whichimpliestheconclusiondirectly 2

It is easy to check G-invariance of the nonnegative function mW1,W 2 : FG → R.

Observing Lemma 5.2,wecouldapplyProposition 5.1todefine

h a (G, U|W2),

and thendefine thetopological entropy of (X, G), h a (G, X),and tail entropy of (X, G),

h a,∗ (G, X),respectively,as:

h a (G, X) = h a G, X |{X} = sup

U∈C o X

h a (G,U)

and

h a, ∗ (G, X) = inf

V∈C o X

h a (G, X |V) = inf

V∈C o X

h a (G, X |V)≥ 0.

Recalling that in the special case of G = Z acting on a compact metric space X,

equivalently, giving a homeomorphism T : X → X, the above definition recovers thedefinitiongivenbyMisiurewiczin[40],whichwasthenusedtodiscussweakexpansivenessforZ-actions.Infact,Misiurewicz[40]introducedtailentropyinthesettingofacompactHausdorffspaceX andacontinuoustransformation ofX intoitself

6 Comparisonbetweensofic andamenablecases

Thefollowingresultisthemainresultofthissection,whichshowsthatourdefinitions

of weakexpansiveness for actions of sofic groups are equivalent to definitions given inthesamespiritofMisiurewicz’s ideaswhenthegroupisamenable

...

Furthermore,[40,Example6.4]showsusaZ-actionwithfiniteentropysuchthatitisnotasymptoticallyh-expansive,whileeachinvariantmeasurehasmaximalentropy.Observethat,asweshallshowlater,thedefinitionsofweakexpansivenessgivenhereforactions

ofsoficgroupsareequivalenttodefinitionsgiveninthesamespiritofMisiurewicz’sideaswhenthegroupisamenable... data-page="15">

5 Tailentropyforactionsofcountablediscreteamenablegroups

In this section we shall introduce tail entropy for actions of countable discreteamenablegroupsinthesamespiritofMisiurewicz...

Thefollowingresultisthemainresultofthissection,whichshowsthatourdefinitions

of weakexpansiveness for actions of sofic groups are equivalent to definitions given inthesamespiritofMisiurewicz’s ideaswhenthegroupisamenable

Ngày đăng: 12/12/2017, 06:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Miklós Abért, Gábor Elek, Dynamical properties of profinite actions, Ergodic Theory Dynam. Sys- tems 32 (6) (2012) 1805–1835 Sách, tạp chí
Tiêu đề: Dynamical properties of profinite actions
Tác giả: Miklós Abért, Gábor Elek
Nhà XB: Ergodic Theory and Dynamical Systems
Năm: 2012
[2] Miklós Abért, Nikolay Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (5) (2012) 1657–1677 Sách, tạp chí
Tiêu đề: Rank gradient, cost of groups and the rank versus Heegaard genus problem
Tác giả: Miklós Abért, Nikolay Nikolov
Nhà XB: J. Eur. Math. Soc. (JEMS)
Năm: 2012
[3] Joseph Auslander, Minimal Flows and Their Extensions, North-Holl. Math. Stud., vol. 153, North- Holland Publishing Co., Amsterdam, 1988, Notas de Matemática [Mathematical Notes], no. 122 Sách, tạp chí
Tiêu đề: Minimal Flows and Their Extensions
Tác giả: Joseph Auslander
Nhà XB: North-Holland Publishing Co.
Năm: 1988
[8] Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (3) (2011) 703–718 Sách, tạp chí
Tiêu đề: Entropy for expansive algebraic actions of residually finite groups
Tác giả: Lewis Bowen
Nhà XB: Ergodic Theory Dynam. Systems
Năm: 2011
[10] Mike Boyle, Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (1) (2004) 119–161 Sách, tạp chí
Tiêu đề: The entropy theory of symbolic extensions
Tác giả: Mike Boyle, Tomasz Downarowicz
Nhà XB: Invent. Math.
Năm: 2004
[11] Mike Boyle, Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1) (1997) 55–102 Sách, tạp chí
Tiêu đề: Expansive subdynamics
Tác giả: Mike Boyle, Douglas Lind
Nhà XB: Trans. Amer. Math. Soc.
Năm: 1997
[12] David Burguet, C 2 surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (1) (2011) 191–236 Sách, tạp chí
Tiêu đề: C 2 surface diffeomorphisms have symbolic extensions
Tác giả: David Burguet
Nhà XB: Inventiones Mathematicae
Năm: 2011
[14] Nhan-Phu Chung, Topological pressure and the variational principle for actions of sofic groups, Ergodic Theory Dynam. Systems 33 (2013) 1363–1390 Sách, tạp chí
Tiêu đề: Topological pressure and the variational principle for actions of sofic groups
Tác giả: Nhan-Phu Chung
Nhà XB: Ergodic Theory Dynam. Systems
Năm: 2013
[15] Nhan-Phu Chung, Hanfeng Li, Homoclinic groups, IE groups and expansive algebraic actions, In- vent. Math. (2014), http://dx.doi.org/10.1007/s00222-014-0524-1,inpress,arXiv:1103.1567 Sách, tạp chí
Tiêu đề: Homoclinic groups, IE groups and expansive algebraic actions
Tác giả: Nhan-Phu Chung, Hanfeng Li
Nhà XB: Invent. Math.
Năm: 2014
[16] Christopher Deninger, Fuglede–Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (3) (2006) 737–758 (electronic) Sách, tạp chí
Tiêu đề: Fuglede–Kadison determinants and entropy for actions of discrete amenable groups
Tác giả: Christopher Deninger
Nhà XB: J. Amer. Math. Soc.
Năm: 2006
[17] Christopher Deninger, Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (3) (2007) 769–786 Sách, tạp chí
Tiêu đề: Expansive algebraic actions of discrete residually finite amenable groups and their entropy
Tác giả: Christopher Deninger, Klaus Schmidt
Nhà XB: Ergodic Theory Dynam. Systems
Năm: 2007
[18] Lorenzo J. Díaz, Todd Fisher, Maria José Pacifico, José L. Vieitez, Entropy-expansiveness for par- tially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 32 (12) (2012) 4195–4207 Sách, tạp chí
Tiêu đề: Entropy-expansiveness for partially hyperbolic diffeomorphisms
Tác giả: Lorenzo J. Díaz, Todd Fisher, Maria José Pacífico, José L. Vieitez
Nhà XB: Discrete and Continuous Dynamical Systems
Năm: 2012
[19] Anthony H. Dooley, Guohua Zhang, Local entropy theory of a random dynamical system, Mem Sách, tạp chí
Tiêu đề: Local entropy theory of a random dynamical system
Tác giả: Anthony H. Dooley, Guohua Zhang
[22] Tomasz Downarowicz, Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (3) (2005) 453–499 Sách, tạp chí
Tiêu đề: Symbolic extensions and smooth dynamical systems
Tác giả: Tomasz Downarowicz, Sheldon Newhouse
Nhà XB: Invent. Math.
Năm: 2005
[24] Manfred Einsiedler, Klaus Schmidt, The adjoint action of an expansive algebraic Z d -action, Monatsh. Math. 135 (3) (2002) 203–220 Sách, tạp chí
Tiêu đề: d
[29] Wen Huang, Xiangdong Ye, Guohua Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal. 261 (4) (2011) 1028–1082 Sách, tạp chí
Tiêu đề: Local entropy theory for a countable discrete amenable group action
Tác giả: Wen Huang, Xiangdong Ye, Guohua Zhang
Nhà XB: J. Funct. Anal.
Năm: 2011
[30] Adrian Ioana, Cocycle superrigidity for profinite actions of property (T) groups, Duke Math. J.157 (2) (2011) 337–367 Sách, tạp chí
Tiêu đề: Cocycle superrigidity for profinite actions of property (T) groups
Tác giả: Adrian Ioana
Nhà XB: Duke Math. J.
Năm: 2011
[31] David Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn. 7 (3) (2013) 617–632 Sách, tạp chí
Tiêu đề: Sofic measure entropy via finite partitions
Tác giả: David Kerr
Nhà XB: Groups Geom. Dyn.
Năm: 2013
[32] David Kerr, Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent.Math. 186 (3) (2011) 501–558 Sách, tạp chí
Tiêu đề: Entropy and the variational principle for actions of sofic groups
Tác giả: David Kerr, Hanfeng Li
Nhà XB: Invent.Math.
Năm: 2011
[33] David Kerr, Hanfeng Li, Combinatorial independence and sofic entropy, Commun. Math. Stat. 1 (2) (2013) 213–257 Sách, tạp chí
Tiêu đề: Combinatorial independence and sofic entropy
Tác giả: David Kerr, Hanfeng Li
Nhà XB: Commun. Math. Stat.
Năm: 2013

TỪ KHÓA LIÊN QUAN