1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Differential Operators Associated to the Cauchy-Fueter Operator in Quaternion Algebra

15 116 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 255,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This paper deals with the initial value problem of the type ∂w ∂t =L t, x, w, ∂w ∂x i 1 where t is the time, L is a linear first order operator matrix-type in Quaternionic Analysis and

Trang 1

© 2011 Springer Basel AG

0188-7009/030591-15

published online January 4, 2011

DOI 10.1007/s00006-010-0272-2

Differential Operators Associated to the Cauchy-Fueter Operator in Quaternion

Algebra

Nguyen

Thanh Van

Abstract. This paper deals with the initial value problem of the type

∂w

∂t =L



t, x, w, ∂w ∂x

i



(1)

where t is the time, L is a linear first order operator (matrix-type)

in Quaternionic Analysis and ϕ is a regular function taking values in

the Quaternionic Algebra The article proves necessary and sufficient conditions on the coefficients of operatorL under which L is associated

to the Cauchy-Fueter operator of Quarternionic Analysis

This criterion makes it possible to construct the operatorL for

which the initial problem (1), (2) is solvable for an arbitrary initial regular functionϕ and the solution is also regular for each t.

Mathematics Subject Classification (2010).35B45; 35F10; 47H10

Keywords.Initial value problem, associated space, interior estimate

1 Preliminaries and Notations

LetH be a Quaternion algebra with the basis formed by e0, e1, e2, e3 where

e0= 1, e3= e1e2= e12.

Suppose that Ω is a bounded domain ofR4 A function f defines in Ω and takes values in the Quaternionic AlgebraH which can be presented as

f =

3



j=0

f j e j ,

where f j (x) are real-valued functions.

We introduce the Cauchy-Fueter operator

D =

3



k=0

e k ∂x ∂ k

Advances in Applied Cliff ord Algebras

Trang 2

592 T.V Nguyen Adv Appl Cliff ord Algebras

Definition 1. A function f ∈ C1(Ω, H) is said to be regular in Ω if f satisfies

Df = 0.

2 Necessary and Sufficient Conditions for Associated Pairs

Suppose that f = 3

j=0 f j e j is a twice continuously differentiable function with respect to the space-like x0, x1, x2, x3 Now assume that f is regular.

This means that Df = 0 It is easy to verify that the condition Df = 0 is

equivalent to

3



i=0

A i

∂f

∂x i = 0,

where

A0=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎦ , A1=

0 −1 0 0

⎦ , A2=

0 −1 0 0

A3=

0 0 −1 0

⎦ , ∂x ∂f i =

∂f0

∂x i

∂f1

∂x i

∂f2

∂x i

∂f3

∂x i

.

We define an operator  as follows,

f =

3



i=0

A i ∂x ∂f

It is clear that Df = 0 if and only if f = 0 Next, we identify the function

f with f :=

f0

f1

f2

f3

⎠ and introduce a differential operator L as follows,

Lf =

3



j=0

B j ∂x ∂f j

where B j = [b (j) αβ ], C = [c αβ ], K =

d0

d1

d2

d3

⎠, b (j) αβ , c αβ , d α , (α, β = 0, 1, 2, 3) are

real-valued functions which are supposed to depend at least continuously on

the time t and the space-like x0, x1, x2, x3 A pair of operators , L is said

to be associated (see [9]) if f = 0 implies (Lf ) = 0 (for each t in case the coefficients of L depend on t) Now we formulate necessary and sufficient conditions on the coefficients of operator L under which L is associated to

Trang 3

Vol 21 (2011) Diff erential Associated Operators and Their Applications 593

the operator  (in other words, L is associated to the Cauchy-Fueter operator

of Quaternionic Analysis) Assume that the functions b (j)

αβ , c αβ , d α (j, α, β =

0, 1, 2, 3) are continuously differentiable with respect to the space-like variable

x0, x1, x2, x3 and differentiable on t.

Put

P j = [p (j) αβ ] = A j B j , j = 0, 1, 2, 3 (5)

Q ij = [q αβ (ij) ] = A i B j + A j B i , 0≤ i < j ≤ 3 (6)

R j = [r αβ (j)] =

3



i=0

A i ∂B ∂x j

i + A j C, j = 0, 1, 2, 3, α, β = 0, 1, 2, 3. (7)

Then we get the following theorem

Theorem 1. The operator L is associated to the operator  if and only if the following conditions are satisfied

i) The functions h (α) = 3

i=0

c iα e i , α = 0, 1, 2, 3, and g =

3



i=0

d i e i are regu-lar.

ii)

r(1)

i0 = r(0)i1 , r(2)i0 = r i2(0), r i0(3)= r i3(0)

r(1)

i1 =−r(0)i0 , r(2)

i1 =−r i3(0), r(3)

i1 = r(0)i2

r(1)

i2) = r(0)i3 , r(2)i2 =−r(0)i0 , r(3)

i2 =−r(0)i1

r(1)

i3 =−r(0)i2 , r(2)

i3 = r(0)i1 , r(3)i3 =−r(0)i0

i = 0, 1, 2, 3.

iii)

q(01)

i0 = p(0)i1 − p(1)i1 , q(02)

i0 = p(0)i2 − p(2)i2 , q(03)

i0 = p(0)i3 − p(3)i3

q(12)

i0 =−p(1)i3 + p(2)

i3 , q(13)i0 = p(1)i2 − p(3)i2 , q(23)

i0 =−p(2)i1 + p(3)

i1

q(01)

i1 =−p(0)i0 + p(1)

i0 , q(02)i1 =−p(0)i3 + p(2)

i3 , q(03)i1 = p(0)i2 − p(3)i2

q(12)

i1 =−p(1)i2 + p(2)

i2 , q(13)i1 =−p(1)i3 + p(3)

i3 , q(23)i1 = p(2)i0 − p(3)i0

q(01)

i2 = p(0)i3 − p(1)i3 , q(02)

i2 =−p(0)i0 + p(2)

i0 , q i2(03)=−p(0)i1 + p(3)

i1

q(12)

i2 = p(1)i1 − p(2)i1 , q(13)

i2 =−p(1)i0 + p(3)

i0 , q i2(23)=−p(2)i3 + p(3)

i3

q(01)

i3 =−p(0)i2 + p(1)

i2 , q(02)i3 = p(0)i1 − p(2)i1 , q(03)

i3 =−p(0)i0 + p(3)

i0

q(12)

i3 = p(1)i0 − p(2)i0 , q(13)

i3 = p(1)i1 − p(3)i1 , q(23)

i3 = p(2)i2 − p(3)i2

i = 0, 1, 2, 3.

Proof We get

(Lf ) =

3



i=0

A i ∂(Lf ) ∂x

i

=

3



i=0

A i

∂x i

⎝3

j=0

B j

∂f

∂x j + Cf + K

Trang 4

594 T.V Nguyen Adv Appl Cliff ord Algebras

=

3



i=0

A i

∂x i

⎝3

j=0

B j

∂f

∂x j

⎠ +3

i=0

A i

∂(Cf )

∂x i

+ 3



i=0

A i

∂K

∂x i

=

3



i=0

3



j=0

A i B j

2f

∂x i ∂x j +

3



i=0

3



j=0

A i

∂B j

∂x i

∂f

∂x j

+

 3



i=0

A i

∂C

∂x i



f +

3



i=0

A i C

∂f

∂x i +

3



i=0

A i

∂K

∂x i

=

3



i=0

A i B i ∂

2f

∂x2

i

0≤i<j≤3 (A i B j + A j B i)

2f

+

3



j=0

 3



i=0

A i ∂B ∂x j

i + A j C



∂f

∂x j +

 3



i=0

A i ∂x ∂C i



f +

3



i=0

A i ∂K ∂x

i .

By (5), (6) and (7), then (8) can be rewritten as

l(Lf ) =

3



i=0 2P i ∂

2f

∂x2

i

0≤i<j≤3

Q ij ∂

2f

∂x i ∂x j +

3



j=0

R j ∂x ∂f j

+

 3



i=0

A i ∂x ∂C i



f +

3



i=0

A i ∂K ∂x

Write

M =

3



i=0

P i ∂

2f

∂x2

i

0≤i<j≤3

Q ij ∂

2f

∂x i ∂x j =

m0

m1

m2

m3

N =

3



j=0

R j ∂x ∂f

j =

n0

n1

n2

n3

S =

 3



i=0

A i ∂x ∂C i



f, T =

3



i=0

A i ∂K ∂x

i .

Then we obtain

We get

m i = p(0)i0 ∂

2f

0

∂x2 + p(0)i1

2f 1

∂x2 + p(0)i2

2f 2

∂x2 + p(0)i3

2f 3

∂x2

+ p(1)

i0

2f

0

∂x2 + p(1)i1

2f 1

∂x2 + p(1)i2

2f 2

∂x2 + p(1)i3

2f 3

∂x2

+ p(2)

i0

2f

0

∂x2 + p(2)i1

2f 1

∂x2 + p(2)i2

2f 2

∂x2 + p(2)i3

2f 3

∂x2

Trang 5

Vol 21 (2011) Diff erential Associated Operators and Their Applications 595

+ p(3)

i0

2f

0

∂x2 + p(3)i1

2f 1

∂x2 + p(3)i2

2f 2

∂x2 + p(3)i3

2f 3

∂x2

+ q(01)

i0

2f 0

∂x0∂x1 + q

(01)

i1

2f 1

∂x0∂x1 + q

(01)

i2

2f 2

∂x0∂x1 + q

(01)

i3

2f 3

∂x0∂x1

+ q(02)

i0

2f0

∂x0∂x2

+ q(02)

i1

2f1

∂x0∂x2

+ q(02)

i2

2f2

∂x0∂x2

+ q(02)

i3

2f3

∂x0∂x2

+ q(03)

i0

2f 0

∂x0∂x3 + q

(03)

i1

2f 1

∂x0∂x3 + q

(03)

i2

2f 2

∂x0∂x3 + q

(03)

i3

2f 3

∂x0∂x3

+ q(12)

i0

2f 0

∂x1∂x2 + q

(12)

i1

2f 1

∂x1∂x2 + q

(12)

i2

2f 2

∂x1∂x2 + q

(12)

i3

2f 3

∂x1∂x2

+ q(13)

i0

2f 0

∂x1∂x3 + q

(13)

i1

2f 1

∂x1∂x3 + q

(13)

i2

2f 2

∂x1∂x3 + q

(13)

i3

2f 3

∂x1∂x3

+ q(23)

i0

2f0

∂x2∂x3

+ q(23)

i1

2f1

∂x2∂x3

+ q(23)

i2

2f2

∂x2∂x3

+ q(23)

i3

2f3

∂x2∂x3

. (11)

Similarly, one gets

n i = r(0)i0 ∂x ∂f0

0

+ r(0)

i1

∂f1

∂x0

+ r(0)

i2

∂f2

∂x0

+ r(0)

i3

∂f3

∂x0

+ r(1)

i0

∂f0

∂x1+ r

(1)

i1

∂f1

∂x1+ r

(1)

i2

∂f2

∂x1+ r

(1)

i3

∂f3

∂x1

+ r(2)

i0

∂f0

∂x2+ r

(2)

i1

∂f1

∂x2+ r

(2)

i2

∂f2

∂x2+ +r

(2)

i3

∂f3

∂x2

+ r(3)

i0

∂f0

∂x3+ r

(3)

i1

∂f1

∂x3+ r

(3)

i2

∂f2

∂x3+ +r

(3)

i3

∂f3

Suppose that f is regular function, then

∂f0

∂x0 − ∂f1

∂x1 − ∂f2

∂x2 − ∂f3

∂x3 = 0

∂f0

∂x1 +∂f1

∂x0 − ∂f2

∂x3 +∂f3

∂x2 = 0

∂f0

∂x2 +∂f1

∂x3 +∂f2

∂x0 − ∂f3

∂x1 = 0

∂f0

∂x3 − ∂f1

∂x2 +∂f2

∂x1 +∂f3

∂x0 = 0.

(13)

It followa from (13), that

∂f0

∂x0 = ∂f1

∂x1 +∂f2

∂x2+ ∂f3

∂x3

∂f1

∂x0 =− ∂f0

∂x1 +∂f2

∂x3 − ∂f3

∂x2

∂f2

∂x0 =− ∂f0

∂x2 − ∂f1

∂x3 +∂f3

∂x1

∂f3

∂x0 =− ∂f0

∂x3 +∂f1

∂x2 − ∂f2

∂x1

(14)

and

Trang 6

596 T.V Nguyen Adv Appl Cliff ord Algebras

2f0

∂x2 = 2f1

∂x0∂x1 + 2f2

∂x0∂x2 + 2f3

∂x0∂x3

2f0

∂x2 =− ∂2f1

∂x0∂x1 − ∂2f3

∂x1∂x2 + 2f2

∂x1∂x3

2f0

∂x2 =− ∂2f1

∂x2∂x3 − ∂2f2

∂x0∂x2 + 2f3

∂x1∂x2.

2f0

∂x2 = 2f1

∂x2∂x3 − ∂2f2

∂x1∂x3 − ∂2f3

∂x0∂x3.

(15)

and similar expression for the other 2f i

∂x2

j , i = 1, 2, 3; j = 0, 1, 2, 3.

Hence we get 3 remaining systems having the form of (15) Thus, one has a total of 12 equations Substituting above 12 equations into (11), and after a calculation, we obtain

m i=



−p(0)i1 + p(1)

i1 + q i0(01)

 2f0

∂x0∂x1

+



−p(0)i2 + p(2)

i2 + q(02)i0

 2f0

∂x0∂x2 +



−p(0)i3 + p(3)

i3 + q i0(03)

 2f 0

∂x0∂x3 +



p(1)

i3 − p(2)i3 + q(12)

i0

 2f 0

∂x1∂x2 +



−p(1)i2 + p(3)

i2 + q i0(13)

 2f 0

∂x1∂x3 +



p(2)

i1 − p(3)i1 + q(23)

i0

 2f 0

∂x2∂x3 +



p(0)

i0 − p(1)i0 + q(01)

i1

 2f 1

∂x0∂x1 +



p(0)

i3 − p(2)i3 + q(02)

i1

 2f 1

∂x0∂x2 +



−p(0)i2 + p(3)

i2 + q i1(03)

 2f1

∂x0∂x3

+



p(1)

i2 − p(2)i2 + q(12)

i1

 2f1

∂x1∂x2 +



p(1)

i3 − p(3)i3 + q(13)

i1

 2f 1

∂x1∂x3 +



−p(2)i0 + p(3)

i0 + q i1(23)

 2f 1

∂x2∂x3 +



−p(0)i3 + p(1)

i3 + q i2(01)

 2f 2

∂x0∂x1 +



p(0)

i0 − p(2)i0 + q(02)

i2

 2f 2

∂x0∂x2 +



p(0)

i1 − p(3)i1 + q(03)

i2

 2f 2

∂x0∂x3 +



−p(1)i1 + p(2)

i1 + q i2(12)

 2f 2

∂x1∂x2 +



p(1)

i0 − p(3)i0 + q(13)

i2

 2f2

∂x1∂x3

+



p(2)

i3 − p(3)i3 + q(23)

i2

 2f2

∂x2∂x3 +



p(0)

i2 − p(1)i2 + q(01)

i3

 2f 3

∂x0∂x1 +



−p(0)i1 + p(2)

i1 + q i3(02)

 2f 3

∂x0∂x2 +



p(0)

i0 − p(3)i0 + q(03)

i3

 2f 3

∂x0∂x3 +



−p(1)i0 + p(2)

i0 + q i3(12)

 2f 3

∂x1∂x2 +



−p(1)i1 + p(3)

i1 + q i3(13)

 2f3

∂x1∂x3 +



−p(2)i2 + p(3)

i2 + q i3(23)

 2f3

∂x2∂x3. (16) Analogously, substituting the relation (14) into (12), one gets

n i= (−r(0)i1 + r(1)

i0 )

∂f0

∂x1+ (−r(0)i2 + r(2)

i0 )

∂f0

∂x2 + (−r i3(0)+ r(3)

i0 )

∂f0

∂x3

+ (r(0)

i0 + r(1)i1 )

∂f1

∂x1 + (r

(0)

i3 + r(2)i1 )

∂f1

∂x2 + (−r i2(0)+ r(3)

i1 )

∂f1

∂x3

Trang 7

Vol 21 (2011) Diff erential Associated Operators and Their Applications 597

+ (−r(0)i3 + r(1)

i2 )

∂f2

∂x1 + (r

(0)

i0 + r(2)i2 )

∂f2

∂x2 + (r

(0)

i1 + r(3)i2 )

∂f2

∂x3

+ (r(0)

i2 + r(1)i3 )

∂f3

∂x1 + (−r i1(0)+ r(2)

i3 )

∂f3

∂x2 + (r

(0)

i0 + r(3)i3 )

∂f3

∂x3. (17)

(*)Sufficient condition

Suppose that the conditions (i), (ii) and (iii) of the Theorem are satisfied From the relation (i), it follows that S = T = 0 Because of (ii) it leads

to n i = 0, i = 0, 1, 2, 3 Using the condition (iii) it implies m i = 0, i =

0, 1, 2, 3 This means that M = N = 0.

Hence l(Lf ) = M + N + S + T = 0 for all regular functions f

The sufficient condition is proved

(*)Necessary condition

Assume that a (l, L) is an associated pair, i.e., if lf = 0, then l(Lf ) = 0 We

will choose 38 regular functions as follows

First, choose f(1) = 0, then (10) passes into T Because of l(Lf ) = 0,

then T = 0 This means that g = 3

i=0

d i e i is a regular function Thus the term T can be omitted in (10) Next, we choose f(2)is arbitrary Quaternionic

constant, f(2)= 0 For this choice (10) implies S = 0 Since f(2) is arbitrary, then 2

i=0

A i ∂x ∂C i = 0 In other words h (α)=

3



i=0

c iα e i , α = 0, 1, 2, 3 are regular functions Hence S vanished in (10) Now, choose f(3)= x0+ x1e1, then (10)

leads to N = 0, so n i = 0, i = 0, 1, 2, 3 But in fact n i = r i0(0) + r(1)i1 . Therefore, we get r(1)

i1 =−r(0)i0 Note that the equality is the same as the condition 4th of the relation (i).

By similar method, choose

f(4)= x

1− x0e1, f(5)= x0e2+ x1e3, f(6)= x1e2− x0e3,

f(7)= x

0+ x2e2, f(8)= x0e1− x2e3, f(9)= x2− x0e2,

f(10)= x

2e1+ x0e3, f(11)= x0+ x3e3, f(12)= x0e1+ x3e2,

f(13)=−x3e1+ x0e2, f(14)=−x3+ x0e3

and substitute these functions into (10) we obtain N = 0 for all f (i) , i =

4, , 14 From this, we have remaining equalities which are contained in the condition (ii) Hence N can be omitted in (10).

Now we choose f(15) = (x2− x2) + 2x

0x1e1 and replace f in (10) by

f(15), it follows that M = 0.

This means

m i =−p(0)i1 + p(1)

i1 + q i0(01)= 0, i = 0, 1, 2, 3.

The equality leads to

q(01)

Trang 8

598 T.V Nguyen Adv Appl Cliff ord Algebras

Note that (18) is the same as the first condition of (iii) Similarly, choose

f(16)=−2x0x1+ (x20− x2

1)e1 f(17)= (x20− x2

1)e2+ 2x0x1e3

f(18)=−2x0x1e2+ (x20− x2

1)e3 f(19) = (x20− x2

2) + 2x0x2e2

f(20)= (x2

0− x2

2)e1− 2x0x2e3 f(21)=−2x0x2+ (x20− x2

2)e2

f(22)= 2x

0x2e1+ (x20− x2

2)e3, f(23) = (x21− x2

2)− 2x1x2e3

f(24)= (x2

1− x2

2)e1− 2x1x2e2 f(25)= 2x1x2e1+ (x21− x2

2)e2

f(26)= 2x

1x2+ (x21− x2

2)e3, f(27)= (x20− x2

3) + 2x0x3e3

f(28)= (x2− x2)e

1+ 2x0x3e2, f(29) =−2x0x3e1+ (x2− x2)e

2

f(30)=−2x0x3+ (x20− x2

3)e3 f(31)= (x21− x2

3) + 2x1x3e2

f(32)= (x2

1− x2

3)e1− 2x1x3e3 f(33)=−2x1x3+ (x21− x2

3)e2

f(34)= 2x

1x3e1+ (x21− x2

3)e3 f(35)= (x22− x2

3)− 2x2x3e1

f(36)= 2x

2x3+ (x22− x2

3)e1 f(37)= (x22− x2

3)e2− 2x2x3e3

f(38)= 2x

2x3e2+ (x22− x2

3)e3

and substitute f = f (j) , j = 16, , 38 into (10) one obtains M = 0 By similar arguments we get all remaining equalities of the condition (iii) This

completes the proof of necessary condition 

Remark 1. We can see that the conditions (ii) and (iii) of Theorem 1 can

be written as follows

R i = R0A i , i = 1, 2, 3

Q ij = (P i − P j )A j A i , 0≤ i < j ≤ 3.

So we get

l(Lf ) =

3



i=0

P i ∂

2f

∂x2

i

0≤i<j≤3 (P i − P j )A j A i ∂

2f

∂x i ∂x j +

3



i=0

R0A i ∂x ∂f

i . Note that A0 = E, A2i = −E and A i A j + A j A i = 0, i = j, i, j ∈ {1, 2, 3}.

Then we easily obtain

l(Lf ) = (P0∂x ∂

0 − P1A1∂x ∂

1− P2A2∂x ∂

2− P3A3∂x ∂

3+ R0)(

3



i=0

A i ∂x ∂f

i)

= V (lf ),

with V = P0∂x ∂

0− P1A1∂x ∂

1 − P2A2∂x ∂

2 − P3A3∂x ∂

3 + R0,

and P0, P1, P2, P3, R0 are given in (5) and (7).

Therefore one gets the following theorem

Trang 9

Vol 21 (2011) Diff erential Associated Operators and Their Applications 599

Theorem 2. The operator L is associated to the operator  if and only if

lL = V l,

where V = P0∂x ∂

0 − P1A1∂x ∂

1 − P2A2∂x ∂

2 − P3A3∂x ∂

3

+ R0.

3 Example

First, we choose c αβ as the arbitrary real-constants, g =

3



i=0

d i e i is arbitrary regular function and choose elements b(0)

αβ , α, β = 0, 1, 2, 3 of the matrix B0

as follows

b(0)

00 =

1

2[−(γ − c00)x0− c10x1− c20x2− c30x3] + δ(0)00

b(0)

01 =

1

2[c01x0+ (γ − c11)x1− c21x2− c31x3] + δ01(0)

b(0)

02 =

1

2[c02x0− c12x1+ (γ − c22)x2− c32x3] + δ02(0)

b(0)

03 =

1

2[c03x0− c13x1− c23x2+ (γ − c33)x3] + δ03(0)

b(0)

10 =

1

2[c10x0− (γ − c00)x1+ c30x2− c20x3] + δ10(0)

b(0)

11 =

1

2[−(γ − c11)x0+ c01x1+ c31x2− c21x3] + δ(0)11

b(0)

12 =

1

2[c12x0+ c02x1+ c32x2+ (γ − c22)x3] + δ12(0)

b(0)

13 =

1

2[c13x0+ c03x1− (γ − c33)x2− c23x3] + δ13(0)

b(0)

20 =

1

2[c20x0− c30x1− (γ − c00)x2+ c10x3] + δ20(0)

b(0)

21 =

1

2[c21x0− c31x1+ c01x2− (γ − c11)x3] + δ21(0)

b(0)

22 =

1

2[−(γ − c22)x0− c32x1+ c02x2+ c12x3] + δ(0)22

b(0)

23 =

1

2[c23x0+ (γ − c33)x1+ c03x2+ c13x3] + δ23(0)

b(0)

30 =

1

2[c30x0+ c20x1− c10x2− (γ − c00)x3] + δ30(0)

b(0)

31 =

1

2[c31x0+ c21x1+ (γ − c11)x2+ c01x3] + δ31(0)

b(0)

32 =

1

2[c32x0− (γ − c22)x1− c12x2+ c02x3] + δ32(0)

b(0)

33 =

1

2[−(γ − c33)x0+ c23x1− c13x2+ c03x3] + δ(0)33,

where γ, δ(0)

αβ , α, β = 0, 1, 2, 3 are arbitrary real-constants.

Trang 10

600 T.V Nguyen Adv Appl Cliff ord Algebras

Second, choose

B1=−A1B0

B2=−A2B0

B3=−A3B0. Then it is easy to verify that all the conditions of Theorem 1 are satisfied By

this way one obtains a class of differential operators L which are associated

to the Cauchy-Fueter of Quaternionic Analysis

Remark 2. If b (j)

αβ , c αβ , d αβ and f α , α, β = 0, 1, 2, 3 do not depend on x3, then

we obtain the necessary and sufficient conditions under which the operator L

is associated to the Cauchy-Riemann Operator in Quaternionic Analysis (see [8]) Using Theorem 1, we can construct a class of the differential operators

L which are associated to the Cauchy-Riemann Operator as follows.

First, we take g =3

i=0 d i e i arbitrary regular function and

c00= s1x1+ s2x2+ γ00

c10=−2s1x013s0x2+ γ10

c20=−2s2x0+13s0x1+ γ20

c30=23s0x0− s2x1+ s1x2+ γ30

c01= s0x2+ γ01

c11= 3s1x1+ 3s2x2+ γ11

c21= 3s2x1− 3s1x2+ γ21

c31= s0x1+ γ31

c02=−s0x1+ γ02

c12=−3s2x1+ 3s1x2+ γ12

c22= 3s1x1+ 3s2x2+ γ22

c32= s0x2+ γ32

c03=2

3s0x0+ s2x1− s1x2+ γ03

c13=−2s2x01

3s0x1+ γ13

c23= 2s1x01

3s0x2+ γ23

c33= s1x1+ s2x2+ γ33,

where s0, s1, s2, γ ij are arbitrary real-constants.

The elements of the matrix B0 are given by

Ngày đăng: 11/12/2017, 23:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm