1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: On the asymptotical stability for index-k tractable daes

4 124 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 1,49 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

DAEs arise in various problems in the natural sciences and technology.. In this paper we study the same param­ eter for linear system of index-A: DAEs... It is cleax th a t Q/c -1 is can

Trang 1

VNU JOURNAL OF SCIENCE, M athem atics - Physics T XVIII, Nq4 - 2002

O N T H E A S Y M P T O T IC A L S T A B I L I T Y F O R INDEX-A: T R A C T A B L E D A E s

D a o T h i L ien

Teacher's Training College, Thai N guyen U niversity

A b s t r a c t DAEs arise in various problems in the natural sciences and technology The stability of DAEs was studied by many authors [ 3 - 9 ] In [9] Tatyana Shtykel proposed

a numerical parameter x ( A , ft) characterising the asym ptotical stability of the trivial

solution of linear system in d ex-1 DAEs

A X ' + B X = 0,

with constant matrix Ay B , where A is singular In this paper we study the same param­

eter for linear system of index-A: DAEs.

1 T h e index-A; t r a c t a b l e D A E s

C onsider th e d ifferential a lg eb ra ic eq u a tio n

w here A, B are c o n sta n t m a tr ic e s o f ord er m sa tisfy in g

( le tA = 0, r a n k [ ( c A + B ) ~ xA] k = r.

D e f i n i t i o n l ( s e e [3 ]) T h e equation (1) is called index-k tractable i f the m a trix pcncil { A, B } is regular w ith in d ex-k.

S in ce th e m a trix p e n cil is regu lar index-A; an d r ank [ ( cA + f i ) " 1 A]k = r, th ere e x ist

in vertib le m a tric es W) T su ch th a t

A - W { o ° u ) T " '

u k = o , Ư 1 ï o , for all I < k ,

B = W { ~ Ề ' / I ) 7 ' - 1'

w here I s is th e 5 X 5 id e n tity m a tr ix L et u s set

Q o = t [° 0

/ 2) T - , P , = / - Q , = r ( ằ

T ypeset by Ạạ^S-TIẼX

9

Trang 2

10 D a o T h i L i e n

Let

A = A - B Q k- 2 = w ( ị 0 ^ T - \

N\ = ker.Ẩ, S i = {z £ R m : BPk-2z € Im *4}.

It is cleax th a t Q/c -1 is canonical projector onto JVi along S\ and jP/c- 1 is canonical projector onto Si along N\ Denote

A , = A + B P k- 2Q k -i = w ( ị I m ° _ ư ) r -1

It is easy to see th a t

A ' l - T ( o I m- r + U + + U k- 1 ) W

M ultiplying ( 1 ) by P k -\A l \ Q0A Ỉ s Q iA x 1, ,Qk~iAl \ respectively, we obtain:

r ( P ^ X Y + P k - i A ^ B P k - i X = 0,

Q o X = 0,

k ( Q k - ĩ X Ỵ + ( Q k - z X ) ' + + (Q o X )' + Q k - i X 4- Q k -2% + 4- Q q X — 0.

Because of

P k -I + Qo + + Q k - 1 = t (Jú Im _ r + u ° " ' + V k - 1 ^ T ~ l = K

is in v ertib le ,h en ce th e s y ste m (2) is eq u iv a le n t to (1); an d from th e s y s t e m (2) we have

r ( P k - x X Ỵ + P k - i A ỵ l B P k - i X = 0,

\ Q fc_ i X = 0.

X is a so lu tio n o f (1) i f a n d o n ly if P k - i X is th e o n e o f (3 ).

D e f i n i t i o n 2 ( s e e [9]) A m a t r i x v a lu e d fu n c tio n Q( t ) = Ç ( t , A , B )c 1 is called

th e G reen m a trix o f e q u a tio n (1) i f i t satisfies th e in itia l va lu e p r o b le m ( I V P )

r ịG { t ) = M Ç (t ) (í > 0),

where M = —P k - i A ị 1B.

It is easy to verify th a t M = P k - \ M = M Ffc-ii and consequently Q(t) — Pk-\etM

is the unique solution of the r v p (4).

Therefore the general solution of equation (1) is of the form

tM

X (t) = g(t)Xo = P k -ie tMXo,

Trang 3

O n t h e a s y m p t o t i c a l s t a b i l i t y f o r 11

w h e r e Xq is an arbitrary c o n s ta n t v e cto r T h u s, w e have proved th e fo llo w in g

T h e o r e m 1 L e t { A } B } b e a r e g u la r p e n c il w ith in d e x - k , Q k ~ \ th e c a n o n ic a l

projector onto N\ 'cûong S\, aiid Pk- 1 = I - Q k -1 - Then the initial value problem

r A X ' + B X = 0,

1 P*-i(*(0)-Jfo) = 0t

[or all X oR m has a u n iq u e solution X( t ) given by X ( t ) = P fc - \ e t MXq w ith the m a trix

M = - P k- l A i i B.

T h is th e o r e m seem s n o t n e w b u t th e m e th o d o f p ro o f is a p p ro p ria te for stu d y in g

th e a sy m p to tic a l s ta b ility o f in d ex -k tra cta b le D A E s.

2 T h e c r ite r io n o f a s y m p to tic a l s ta b ility o f t h e tr iv ia l s o lu tio n o f D A E s w ith index-A:

2 1 T h e a s y m p to tic a l s ta b ility o f th e tr iv ia l s o lu tio n o f D A E s w ith in d e x -k

D e f i n i t i o n 3 ( s e e [3 - 7 ] ,[ 9 ] ) T h e trivial solution X = 0 o f (1) is called stable in

th e sense o f L iapunov i f for certain projector II along the m a xim a l invariant subspace o f the m a trix pencil {A , 8 } associated w ith the infinite eigenvalue th e I V P

f A X ' + B X = 0,

1 U ( X ( 0 ) - X o ) = 0,

for all X o € R™ has a so lu tio n X ( t j X o ) defined on ( 0, + o o ) M oreover, for each e > 0 there exists a ỗ = ổ(e) > 0 such th a t ||X ( i , X o ) || < e for all t > 0 a n d for all Xq e R m

w ith u n r o l l < Í Here we choose II = P i t - 1.

D e f i n i t i o n 4 ( s e e [6] ,[ 9 ] ) T h e trivial solution X = 0 o f (1) is said to be a sym p ­ totica lly stable in th e sense o f L iapunov i f it is sta b le and there is a ỏo > 0 such th a t for dll X q £ H171 sa tisfyin g th e in eq u a lity ||ILXo|| < ÔQ one g ets X ( t, X q ) —► 0 as t -4 4-00.

L e m m a I f Ư is a k -n ip o te n t m a trix then d e t ( x u + I m - r ) ^ 0 for all X £ c

T h e o r e m 2 T he trivia l solution X = 0 o f (1) is a sym p to tica lly sta b le if and only

i f all fin ite eigenvalues o f th e m a tr ix pencil { A, B } have negative real parts.

2 2 T h e c r i te r i o n o f a s y m p to tic a l s ta b ility

L et all fin ite eig e n v a lu es o f th e p en cil { A ì B } w ith index-fc h a v e n e g a tiv e real p arts

A ssu m e th a t th e m a tr ic es M a n d jPfc- 1 have th e str u ctu re s d e scrib ed a b o v e W e consider

th e L ia p u n o v eq u a tio n

w ith a n u n k n o w n m a trix X T h e m a trix F is su p p o sed t o b e h e n n itia n and p o sitiv e

d efin ite S in ce

| | F f c - i e t M | < 7 ( r ) ( M ) r - l e - t a / 2 i

Ơ

Trang 4

12 D a o T h i L i e n

H k = / é M ' P'k _ xF P k ^ e t M di + Q l _ xF Q k - x

J o

converges On the other h an d Hk is herm itian and positive definite and Hk satisfies the

eq u a tio n (5 ).

T h e o r e m 3 I f the m a tr ix p c n c il { A } B } has ind ex-k and all its fin ite eigenvalues belong to th e n eg a tive co m p lex h a lf p la n e, th en x ( A } tì) = 2\\A — B Q /c - 2||||/3||||iĩfc|| < oo

Inversly we assu m e th a t x ( A yB) < o o and H k is a solution o f (5 ).T h en th e follow ing

in e q u a lity is v a lid

-til

< V ữ Ã 7 t ì ) e \\Pk-iXo\\.

T h is m ea n s th a t th e trivial so lu tio n X = 0 is a sym p to tica lly stable.

A c k n o w l e g m e n t W e w ish t o th a n k P rof P h a m K y A n h an d Dr N g u y e n H u u

D u for th eir v a lu a b le s u g g e s tio n s d u r in g th e p rep aration o f th is paper.

References

1 B P D e m id o v ish , L ectu res on th e M athem atics T heory o f Stability, N auk a, M oscow

1967 (in R u ssia n ).

2 S K G o d u n o v,O rdinary differential equations w ith co nstant coefficients,T v l B o u n d ­

ary p r o b le m s N o v o sib irk U n iv e r s ity 1994 (R u ssia n ).

3 E G r ie p e n tr o g , R M arz, D ifferential Algebraic E quations a n d their N um ericfil

T re a tm en t, T eu b n er - T e x te M a th 88, L eip zig 1986.

4 M H a n k e, R o d r ig u ez s a n d R A n to n io , A sym p to tic properties o f regularized differ­

en tial algebraic equations, P r e p r in t N r 95-6, H u m b o ld t U n iv e r sita t zu B erlin 1995.

5 R L a m a ir, R M arz a n d M M R M a tth e ij, On the stability behaviour o f system s obtained by in d ex red u ctio n, P re p rin t N r 92-27, H u m b o ld t U n iv e r sita t ZM B erlin 1992.

6 R M arz, C r ite r ia f o r th e tr iv ia l o f d iffe r e n tia l alg ebraic e q u a tio n w ith s m a l l n o n lin ­

e a r to be a s y m p to tic a lly sta b le , P r e p r in t N r 97-13, H u m b o ld t U n iv e rs ita t z u B erlin 1997.

7 c T isc h e n d o rf, O n sta b ility o f solutions o f autonom ous index- 1 tracẦable a n d quasi- linear index-2 tractable D A E s y P rep r in t Nr 91-25, H u m b o ld t U n iv e r s ita t 2T.U B erlin 1991.

8 c T isch en d o rf, Feasibility an d stable behaviour o f the BD F A pplied tc> index-2 differential algebraic equations, P rep r in t N r 93-04, H u m b o ld t U n iv ersita t 25U Berlin

1993.

9 T atyana Shtykel, On the criterion of asymptotic stability for index-1 tractable differ­ ential algebraic equations, P reprint Nr 98-6, Humboldt U niversitat zu Berlin 1998.

t h e f o l l o w i n g i n t e r g r a l

/ > 4 - 0 0

Ngày đăng: 11/12/2017, 21:56

🧩 Sản phẩm bạn có thể quan tâm