1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Chapter 7 - Kỹ thuật thông tin vô tuyến

11 405 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Kỹ thuật thông tin vô tuyến
Trường học University of Information Technology
Chuyên ngành Information Technology
Thể loại bài báo
Thành phố Ho Chi Minh
Định dạng
Số trang 11
Dung lượng 207,14 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kỹ thuật thông tin vô tuyến

Trang 1

Chapter 7

1 P s= 10−3

QPSK, P s = 2Q( √ γ s ) ≤ 10 −3 , γ s ≥ γ0 = 10.8276

P out (γ0) =

M

Y

i=1

³

1 − e − γ0 γi

´

γ1 = 10, γ2 = 31.6228, γ3 = 100

M = 1

P out =

³

1 − e − γ0 γ1

´

= 0.6613

M = 2

P out =

³

1 − e − γ0 γ1

´ ³

1 − e − γ2 γ0

´

= 0.1917

M = 3

P out =

³

1 − e − γ0 γ1

´ ³

1 − e − γ2 γ0

´ ³

1 − e − γ0 γ3

´

= 0.0197

2 p γΣ(γ) = M

γ

£

1 − e −γ/γ¤M −1

e −γ/γ

γ = 10dB = 10

as we increase M, the mass in the pdf keeps on shifting to higher values of γ and so we have higher values of γ and hence lower probability of error.

MATLAB CODE

gamma = [0:.1:60];

gamma_bar = 10;

M = [1 2 4 8 10];

fori=1:length(M)

pgamma(i,:) = (M(i)/gamma_bar)*(1-exp(-gamma/gamma_bar)).^

(M(i)-1).*(exp(-gamma/gamma_bar));

end

3

P b =

Z

0

1

2e

−γ p γΣ(γ)dγ

=

Z

0

1

2e

γ

h

1 − e −γ/γ

iM −1

e −γ/γ dγ

Z

0

h

1 − e −γ/γ

iM −1

n=0

µ

M − 1 n

2

n=0

µ

M − 1 n

(−1) n 1

1 + n + γ = desired expression

Trang 2

0 10 20 30 40 50 60 0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

γ

p γ Σ

M = 1

M = 4

M = 10

Figure 1: Problem 2

4

p γΣ(γ) =

½

P r{γ2 < γ τ , γ1 < γ} γ < γ τ

P r{γ τ ≤ γ1 ≤ γ} + P r{γ2 < γ τ , γ1 < γ} γ > γ τ

If the distribution is iid this reduces to

p γΣ(γ) =

½

P γ1(γ)P γ2(γ τ) γ < γ τ

P r{γ τ ≤ γ1 ≤ γ} + P γ1(γ)P γ2(γ τ ) γ > γ τ

5

P b =

Z

0

1

2e

−γ p γΣ(γ)dγ

p γΣ(γ) =

( ¡

1 − e −γ T /γ¢1

γ e −γ r /γ γ < γ T

¡

2 − e −γ T /γ¢1

γ e −γ r /γ γ > γ T

P b = 1

³

1 − e −γ T /γ´ Z γ T

0

e −γ/γ e −γ dγ + 1

³

2 − e −γ r /γ´ Z

γ T

e −γ/γ e −γ dγ

2(γ + 1)

³

1 − e −γ T /γ + e −γ T e −γ T /γ´

6

P b P b (10dB) P b (20dB)

SC(M=2) M2 PM −1 m=0 (−1) m

M − 1 m

SSC 2(γ+1)1 ¡1 − e −γ T /γ + e −γ T e −γ T /γ¢

0.0129 2.7 × 10 −4

As SNR increases SSC approaches SC

7 See

MATLAB CODE:

gammab_dB = [0:.1:20];

gammab = 10.^(gammab_dB/10);

M= 2;

Trang 3

0 2 4 6 8 10 12 14 16 18 20

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10−1

Pb,avg

M = 2

M = 4

Figure 2: Problem 7

for j = 1:length(gammab)

Pbs(j) = 0

for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m)); Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j))); end

end

semilogy(gammab_dB,Pbs,’b ’)

hold on

M = 3;

for j = 1:length(gammab)

Pbs(j) = 0

for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m)); Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j))); end

end

semilogy(gammab_dB,Pbs,’b-.’);

hold on

M = 4;

for j = 1:length(gammab)

Pbs(j) = 0

for m = 0:M-1

f = factorial(M-1)/(factorial(m)*factorial(M-1-m)); Pbs(j) = Pbs(j) + (M/2)*((-1)^m)*f*(1/(1+m+gammab(j))); end

end

semilogy(gammab_dB,Pbs,’b:’);

hold on

8

γΣ = 1

N0

³PM

´2

PM

i

1

N0

P

a2

i

P

γ2

i

P

a2

i

=

P

γ2

i

N0

Trang 4

Where the inequality above follows from Cauchy-Schwartz condition Equality holds if a i = cγ i where

c is a constant

9 (a) γ i = 10 dB = 10, 1 ≤ i ≤ N

N = 1, γ = 10, M = 4

P b = 2e −1.5 (M −1) γ = 2e −15/3 = 0.0013

(b) In MRC, γΣ = γ1+ γ2+ + γ N

So γΣ = 10N

P b = 2e −1.5 (M −1) γΣ = 2e −5N ≤ 10 −6

⇒ N ≥ 2.4412

So, take N = 3, P b = 6.12 ×10 −8 ≤ 10 −6

10 Denote N (x) = √1

2π e −x2/2 , Q 0 (x) = −N (x)

P b =

Z

0

Q(p2γ)dP (γ)

Q(∞) = 0, P (0) = 0

d

dγ Q(

p

2γ) = −N (p2γ)

2

2√ γ = −

1

2π e

2√ γ

P b =

Z

0

1

2π e

2√ γ P (γ)dγ

P (γ) = 1 − e −γ/γ

M

X

k=1

(γ/γ) k−1

(k − 1)!

1

Z

0

1

2π e

2√ γ dγ =

1 2 2

Z

0

1

2π e

2√ γ e

−γ/γ M

X

k=1

(γ/γ) k−1

(k − 1)! dγ =

M

X

k=1

1

(k − 1)!

"

1

2√ π

Z

0

µ

γ γ

k−1

#

Denote A =

µ

1 +1

γ

−1/2

=

m=0

1

m!

1

2√ pi

Z

0

e −γ/A2γ −1/2

µ

γ γ

m

let γ/A2 = u

=

m=0

1

m!

1

2√ pi

Z

0

e −u u −1/2 A

µ

uA2

γ

m

A2du

= A

2 +

m=1

µ

2m − 1

m

A 2m

22m

A

γ m

P b = 1 − A

2

m=1

µ

2m − 1

m

A 2m+1

22m γ m

Trang 5

DenoteN (x) = √1

2π e

−x2/2 Q 0 (x) = [1 − φ(x)] 0 = −N (x)

P b =

Z

0

Q(p2γ)dP (γ) =

Z

0

1

2π e

2γ P (γ)dγ

Z

0

1

2π e

2γ dγ =

1

πΓ

µ 1 2

= 1

Z

0

1

2π e

2γ e

2

q

Z

0

1

2π e

r

πγ

γ e

−γ/γ

µ

1 − 2Q

µr

γ

¶¶

2√ γ

1

where A = 1 + 2

γ , B = 1 +

1

γ

overall P b = 1

2

"

1 −

s

1 − 1 (1 + γ)2

#

12

P b P b (10dB) P b (20dB)

no diversity 12

h

1 −

q

γ b

1+γ b

i 0.0233 0.0025 two branch SC R Q( √ 2γ)p γΣ 0.0030 3.67 × 10 −5

two branch SSC R Q( √ 2γ)p γΣ 0.0057 1.186 × 10 −4

two branch EGC R Q( √ 2γ)p γΣ 0.0021 2.45 × 10 −5

two branch MRC R Q( √ 2γ)p γΣ 0.0016 0.84 × 10 −5

As the branch SNR increases the performance of all diversity combining schemes approaches the same

MATLAB CODE:

gammatv = [.01:.1:10];

gammab = 100;

gamma = [0:.01:50*gammab];

for i = 1:length(gammatv)

gammat = gammatv(i);

gamma1 = [0:.01:gammat];

gamma2 = [gammat+.01:.01:50*gammab];

tointeg1 = Q(sqrt(2*gamma1)).*((1/gammab)*(1-exp(-gammat/gammab)).*exp(-gamma1/gammab)); tointeg2 = Q(sqrt(2*gamma2)).*((1/gammab)*(2-exp(-gammat/gammab)).*exp(-gamma2/gammab)); anssum(i) = sum(tointeg1)*.01+sum(tointeg2)*.01;

end

13 gammab_dB = [10];

gammab = 10.^(gammab_dB/10);

Gamma=sqrt(gammab./(gammab+1));

pb_mrc =(((1-Gamma)/2).^2).*(((1+Gamma)/2).^0+2*((1+Gamma)/2).^1);

pb_egc = 5*(1-sqrt(1-(1./(1+gammab)).^2));

Trang 6

0 2 4 6 8 10 12 14 16 18 20

10 −5

10 −4

10 −3

10 −2

γ

Pb

MRC

dB penalty ~ 5 dB

Figure 3: Problem 13

14 10−3 = P b = Q( √ 2γ b ) ⇒ 4.75, γ = 10

MRC P out = 1 − e −γ0PM

k−1

(k−1)! = 0.0827 ECG P out = 1 − e −2γ R − √ πγ R e −γ R (1 − 2Q( √ 2γ R )) = 0.1041 > P out,M RC

15 P b,M RC = 0.0016 < 0.0021P b,EGC

16 If each branch has γ = 10dB Rayleigh

γΣ = overall recvd SNR = γ12

2 ∼ γe (γ/2) −γ/(γ/2)2 γ ≥ 0

BPSK

P b =

Z

0

Q(p2γ)p γΣdγ = 0.0055

17 p(γ) whereR0∞ p(γ)e −xγ dγ = 0.01γ √

x

we will use MGF approach

P b = 1

π

Z π/2

0

Π2i=1 M γ i

µ

sin2φ

= 1

π

Z π/2

0

(0.01γ sin φ)2

= (0.01γ)

2

4 = 0.0025 18

P b =

µ

1 − π

2

¶3 X2

m=0

µ

l + m m

¶ µ

1 + π

2

m

; π =

r

γ

1 + γ

Nakagami-2 fading

M γ

µ

sin2φ

=

µ

1 + γ

2 sin2φ

−2

P b = 1

π

Z π/2

0

µ

M γ

µ

sin2φ

¶¶3

dφ, γ = 10 1.5 = 5.12 × 10 −9

MATLAB CODE:

gammab = 10^(1.5);

Gamma = sqrt(gammab./(gammab+1));

Trang 7

sumf = 0;

for m = 0:2

f = factorial(2+m)/(factorial(2)*factorial(m));

sumf = sumf+f*((1+Gamma)/2)^m;

end

pb_rayleigh = ((1-Gamma)/2)^3*sumf;

phi = [0.001:.001:pi/2];

sumvec = (1+(gammab./(2*(sin(phi).^2)))).^(-6);

pb_nakagami = (1/pi)*sum(sumvec)*.001;

19

P b = 1

π

Z π/2

0

µ

1 + γ

2 sin2φ

−2µ

1 + γ sin2φ

−1

gammab_dB = [5:.1:20];

gammabvec = 10.^(gammab_dB/10);

for i = 1:length(gammabvec)

gammab = gammabvec(i);

phi = [0.001:.001:pi/2];

sumvec = ((1+(gammab./(2*(sin(phi).^2)))).^(-2)).*((1+

(gammab./(1*(sin(phi).^2)))).^(-1));

pb_nakagami(i) = (1/pi)*sum(sumvec)*.001;

end

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

γavg (dB)

Figure 4: Problem 19

20

P b= 2

3Q

³p

2γ b(3) sin³ π

8

´´

α = 2/3, g = 3 sin2³ π

8

´

M γ

µ

sin2φ

=

µ

1 + sin2φ

−1

P b= α

π

Z π/2

0

µ

1 + sin2φ

−M

Trang 8

MATLAB CODE:

M = [1 2 4 8];

alpha = 2/3; g = 3*sin(pi/8)^2;

gammab_dB = [5:.1:20];

gammabvec = 10.^(gammab_dB/10);

for k = 1:length(M)

for i = 1:length(gammabvec)

gammab = gammabvec(i);

phi = [0.001:.001:pi/2];

sumvec = ((1+((g*gammab)./(1*(sin(phi).^2)))).^(-M(k))); pb_nakagami(k,i) = (alpha/pi)*sum(sumvec)*.001;

end

end

10 −15

10 −10

10 −5

10 0

γavg (dB)

Figure 5: Problem 20

Trang 9

Q(z) = 1

π

Z π/2

0

exp

·

− z2

sin2φ

¸

dφ , z > 0

Q2(z) = 1

π

Z π/4

0

exp

·

− z2

2 sin2φ

¸

dφ , z > 0

P s (γ s) = 4

π

µ

1 − √1 M

¶ Z π/2

0

exp

·

− gγ s

sin2φ

¸

dφ −

4

π

µ

1 − √1 M

2¶ Z π/4

0

exp

·

− gγ s

sin2φ

¸

P s =

Z

0

P s (γΣ)p γΣΣ)dγΣ

= 4

π

µ

1 − √1 M

¶ Z π/2

0

Z

0

exp

µ

Σ

sin2φ

p γΣ(γ)dγΣdφ −

4

π

µ

1 − √1 M

¶2Z π/4

0

Z

0

exp

µ

Σ

sin2φ

p γΣ(γ)dγΣ

But γΣ = γ1+ γ2+ + γ M = Σγ i

= 4

π

µ

1 − √1 M

¶ Z π/2

0

ΠM i=1 M γ i

µ

sin2φ

dφ −

4

π

µ

1 − √1 M

¶2Z π/4

0

ΠM i=1 M γ i

µ

sin2φ

22 Rayleigh: M γ s (s) = (1 − sγ s)−1

Rician: M γ s (s) = 1+k−sγ 1+k

s exp

³

k s γ s

1+k−sγ s

´ MPSK

P s=

Z (M −1)π/M

0

M γ s

µ

sin2φ

dφ → no diversity

Three branch diversity

P s = 1

π

Z (M −1)π/M

0

µ

1 + sin2φ

−1·

(1 + k) sin2φ

(1 + k) sin2φ + gγ sexp

µ

(1 + k) sin2φ + gγ s

¶¸2

g = sin2³ π

16

´

= 0.1670

MQAM:

Formula derived in previous problem with g = 1.5

16−1 = 1.5

15

P s = 0.0553

MATLAB CODE:

gammab_dB = 10;

gammab = 10.^(gammab_dB/10);

K = 2;

Trang 10

g = sin(pi/16)^2;

phi = [0.001:.001:pi*(15/16)];

sumvec=((1+((g*gammab)./(sin(phi).^2))).^(-1)).*((((

(1+K)*sin(phi).^2)./((1+K)*sin(phi).^2+

g*gammab)).*exp(-(K*gammab*g)./((1+K)*sin(phi).^2+g*gammab))).^2); pb_mrc_psk = (1/pi)*sum(sumvec)*.001;

g = 1.5/(16-1);

phi1 = [0.001:.001:pi/2];

phi2 = [0.001:.001:pi/4];

sumvec1=((1+((g*gammab)./(sin(phi1).^2))).^

(-1)).*(((((1+K)*sin(phi1).^2)./((1+K)*

sin(phi1).^2+g*gammab)).*exp(-(K*gammab*g)./((

1+K)*sin(phi1).^2+g*gammab))).^2);

sumvec2=((1+((g*gammab)./(sin(phi2).^2))).^(-1)).*((((

(1+K)*sin(phi2).^2)./((1+K)*sin(phi2).^2+

g*gammab)).*exp(-(K*gammab*g)./((1+K)*sin(phi2).^2+g*gammab))).^2); pb_mrc_qam = (4/pi)*(1-(1/sqrt(16)))*sum(sumvec1)*.001 -

(4/pi)*(1-(1/sqrt(16)))^2*sum(sumvec2)*.001;

10 −9

10 −8

10 −7

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

Figure 6: Problem 22

23 MATLAB CODE:

M = [1 2 4 8];

alpha = 2/3;

g = 1.5/(16-1);

gammab_dB = [5:.1:20];

gammabvec = 10.^(gammab_dB/10);

for k = 1:length(M)

for i = 1:length(gammabvec)

gammab = gammabvec(i);

phi1 = [0.001:.001:pi/2];

Trang 11

phi2 = [0.001:.001:pi/4];

sumvec1 = ((1+((g*gammab)./(1*(sin(phi1).^2)))).^(-M(k)));

sumvec2 = ((1+((g*gammab)./(1*(sin(phi2).^2)))).^(-M(k)));

pb_mrc_qam(k,i) = (4/pi)*(1-(1/sqrt(16)))*sum(sumvec1)*.001 -

(4/pi)*(1-(1/sqrt(16)))^2*sum(sumvec2)*.001; end

end

Ngày đăng: 22/07/2013, 17:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN