Perturbative integrability in N=4 SYM 2002 Minahan,Zarembo, Beisert,Kristijanssen,Staudacher 200 3 -2008 Bena,Polchinski,Roiban Kazakov,Marshakov, Minahan, Zarembo, Frolov, Tseytlin Sch
Trang 1Nikolay Gromov
Based on
N G., V Kazakov, S Leurent , D Volin 1305.1939 , 1405.4857
N G., F Levkovich-Maslyuk, G Sizov, S Valatka 1402.0871
A Cavaglia , D Fioravanti, N G., R Tateo 1403.1859
N G., G Sizov 1403.1894
M Alfimov,N G., V Kazakov to appear
Strings 2014
Trang 2Perturbative integrability in N=4 SYM
2002
Minahan,Zarembo, Beisert,Kristijanssen,Staudacher
200 3 -2008
Bena,Polchinski,Roiban Kazakov,Marshakov, Minahan, Zarembo, Frolov, Tseytlin Schafer-Nameki Beisert,Kazakov,Sakai,Zarembo
NG,Vieira
Classical integrability of string ϭ-model
on AdS5×S5, quasiclassics
2004-2006
Arutyunov,Frolov,Staudacher Staudacher, Beisert
Janik Hernandez,Lopez Roiban, Tseytlin Beisert,Eden,Staudacher
S-matrix, asymptotic Bethe Ansatz
Cusp dimension
2005-2008
Ambjorn,Janik,Kristijanssen Arutyunov,Frolov Bajnok,Janik, Lukowski
Finite size corrections and mirror model
2009-2010
NG , Kazakov, Vieira Bombardelli,Fioravanti, Tateo
NG , Kazakov,Vieira Arutyunov, Frolov Covagia,Fioravanti,N.G.,Tateo
Analytic Y-system for exact spectrum,
TBA
2011-2014
NG, Kazakov, Leurent, Volin
Quantum spectral curve for all operators
Origins of YM
integrability:
Lipatov’s BFKL
Hamiltonian
Lipatov
Faddeev,Korchemsky
1993
Origins of YM integrability: Lipatov’s BFKL Hamiltonian
Lipatov Faddeev,Korchemsky Alfimov,N.G.,Kazakov to
appear
1993
Plan:
Review of the QSC
construction
Examples:
1) near BPS 2) BFKL limit Generalization to ABJM
Integrability in gauge theory
Trang 3EOM equivalent to where
on EOM
current
State-dependent cuts
Eigenvalues of the monodromy matrix:
Analytic properties:
Motivation from classics
[Bena, Polchinski, Roiban]
[Dorey, Vicedo]
Trang 4Can be mapped to a spin chain state:
The one-loop dilatation operator coincides with Heisenberg spin chain Hamiltonian Sklyanin separation of variables allows to factorize the wave function
where
In the simplest case
Two solutions: polynomial singular solution
From weak coupling
[Beisert, Sctaudacher]
Trang 51) We start exploring all DOS of the string
2) Poles open into cuts
Heisenberg, SYM Quantum Spectral Curve Classical string
3) Need to know monodromies, when going under the cuts
Generalization to finite coupling
[N.G., Kazakov, Leuren, Volin]
Trang 6Charges in S5 are integer Charges in AdS5 contain anom.dimension
“Miraculous” simplification
[N.G., Kazakov, Leuren, Volin]
Trang 7The system reduced to 4+6 functions:
Analytical continuation to the next sheet:
Quadratic branch cuts:
-system
is a closed system of
equtions!
- system
[N.G., Kazakov, Leuren, Volin]
Trang 8Examples: near-BPS expansion
Trang 9In the BPS limit: entire periodic function
For in the small S limit:
Solution:
- simple Riemann-Hilbert problem
Near BPS limit: small S
Result:
Similar to the localization results!
[NG Sizov, Valatka, Levkovich-Maslyuk]
[Basso] [Zarembo; Pestun]
Trang 10Extrapolating results to finite spin
Gromov, Serban, Shenderovich,
Volin`11;
Roiban, Tseytlin`11;
Vallilo, Mazzucato`11 Plefka, Frolov`13
Gubser, Klebanov,
Polyakov `98
Not hard to iterate the procedure and go further away from BPS
Kotikov, Lipatov`13
Costa, Goncalves,
Penedones` 12
We also extract pomeron intercept:
More orders in small S
Gubser, Klebanov,
Polyakov `98
[Basso][NG Sizov, Valatka, Levkovich-Maslyuk]
Trang 11BFKL regime
Trang 12Spectrum for different spins: [Brower, Polchinski, Strassler, -Itan `06]
Important class of single trace operators:
BFKL regime
BFKL regime:
So that: Resumming to all loops terms
In this regime SYM is undistinguishable from the real QCD
Trang 13Small coupling no branch cuts
The problem is essentially about gluons, i.e it is more natural to pass to AdS
S= -1 is when for the first time this ansatz is consistent for non-integer ∆
Can be solved explicitly
Enters into the Q-function of Lipatov, de Vega; Korchemsky, Faddeev!
BFKL limit of -system
[Alfimov, N.G., Kazakov to appear]
[Kotikov, Lipatov] Plugging it into - system we get:
Trang 14ABJM Theory
Trang 15Spectral curve for ABJM
define
Discontinuities Constrains
[ A Cavaglia , D Fioravanti, N G., R Tateo ]
Trang 16Spectral curve for ABJM Algebraically and interchanged their roles, but not analytically
Another important difference is the position of the branch points:
i-(anti)periodic ABJM:
i-periodic SYM:
enters into many important quantities: cusp dimension, magnon dispertion
Trang 17Finding Interpolation function h
In the near BPS limit we should be able to match with localization
Integrability:
Elliptic type integral
ABJM Matric model integral in its planar limit:
Localization:
Comparing cross-ratios of the branch points:
[ N.G., Sizov ]
[Pestun][Kapustin, Willett, Yaakov] [Marino, Putrov]
Trang 18Interpolation function h
Minahan, Ohlsson Sax, Sieg &
Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, Tartaglino-
Mazzucchelli, Minahan, Zarembo
?
McLoughlin, Roiban Tseytlin Abbott, Aniceto, Bombardelli Lopez-Arcos, Nastase
Bergman, Hirano
Reproduces ~4
nontrivial coefficients!
Trang 19Conclusions
• QSC unifies all integrable structures: BFKL/ local
operators, classical strings/spin chains
• Mysterious relation between ABJM and N=4 SYM
integrable structures Sign for an unifying theory? What
is QSC for AdS3?
• Q-functions should give a way to the exact wave
function in separated variables Can we use it to
compute general 3-point correlation functions to all
loops?
• Established links between exact results in integrability and localization Does there exist a unified structure
which works for both non-BPS and non-planar?
Discretization of Zhukovsky cut?