O-1 curve, unlike the O-2 curve, when shrunk leaves no imprint of singularity in the base.. Basic classification strategy: Classify all the possible bases that can appear in F-theory, up
Trang 5There are two types of deformations:
Trang 6!
Trang 7!
Trang 8!
Trang 9!
Trang 10!
!
Trang 11!!!!Equivalent!to!IIA!construckons!of! [GaioPo,Tomasiello]!
Trang 15F^theory!realizakon:!
Trang 19Whereas!the!A!!!!case!was!given!by!(7^brane!dressing!of)!
!!
!!!!!!!!!!!!!!!!!2!!!!!!!!2!!!!!!!2!!!!.!.!.!!2!
!1!!!!!!!!!!!!!!!2!!!!!!!!!!2!!!!!!!!2!!!!!!.!.!.!!!!2!
n!
Trang 20!
All!the!known!examples!of!(2,0)!and!(1,0)!CFT’s!can!be!realized!in!IIB/F^theory.!!!
(2,0)!:!!!!!!ADE!singularikes!of!IIB!
!
!!!!!!!
!
Trang 21O(-1) curve, unlike the O(-2) curve, when shrunk leaves no imprint of singularity in the base
122222 corresponds to n blow ups of the base
Basic classification strategy: Classify all the possible bases that can appear in F-theory, up to blow ups and adding 7-branes wrapping the cycles
(i.e classify the maximally higgsed phase because
in going to Higgs phase we first shrink cycles)
Surprising result: All allowed endpoints correspond
to orbifold singularities
for special subgroups
Trang 22For!a!single!curve:!
Trang 24addikonal!series!of!endpoints:!
A^type,!D^type!similar!to!the!usual!ADE!case!except!the!cyclic!element!does!not!have!determinant!1.!
Trang 25x!!!!x!!!!x!!!x!!!!x!!!!2!!!!2!!!!!!!!!!2!!!2!!!!y!!!!y!!!y!!!!y!!!!y!1!!!!!2!!!!!3!!!!4!!!!!5!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!5!!!!4!!!!!3!!!!2!!!!!1!
Trang 26U(2)!subgroup!e.g.!A^case,!generated!by:!
Trang 27!!!!!!2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2!
2!!!2!!!!!!!!!2!!!3!!!2!!!!!!!!!!!!!!!!2!!!2!!!!!!!!!2!!4!!!2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2!!!2!!!!!!!!!2!!!2!!!3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Trang 285!!!!!1!!!!5!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 6!!!!!1!!!!3!!!!1!!!!!6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Each!of!these!end!points!leads!to!a!canonical!
tensor!branch! (which!require!addikonal!blow!
ups!for!the!ellipkc!3^fold!singularikes)! leading!
to!a!final!geometry!of!blow!ups!
Trang 33!
M5!
Trang 34!
M5!
Trang 35!
M5!
Trang 36M5!
Trang 37M5!
Trang 38M5!
Trang 39!
!
New!frackonal!M5!branaes!
M5!
Trang 40M5!
bifundamental!`E7!maPer’!=SCFT!
Trang 41M-theory Large N Duals
Some of these theories admit simple large N duals:
Trang 43M-theory Large N Duals
Some of these theories admit simple large N duals:
Trang 45Computation of the Superconformal Index
ZS5 £S 1 = R
M C ZR4 £T 2 ZR0 4 £T 2 ZR00 4 £T 2 [Lockhart,V; Kim ] can be computed using string instantons:
: The elliptic genus of n strings twisted by
rotations of and global symmetries of CFT
Alternatively can be computed using
topological string/Nekrasov partition function
Trang 47[Gadde,Gukov;!Benini,Eager,Hori,Tachikawa]!
Trang 48One learns unlike fundamental strings, tensionless strings do form bound states which is reflected in:
Z2(¿ ) 6= 12[(Z1(¿ )2 + Z1(2¿ ) + Z1(¿2) + Z1(¿ +12 )]
Trang 49!
In!M^theory,!strings!arise!as!M2!branes!suspended!between!M5!branes.!Leads!to!a!dual!perspeckve:!
!!!!!!!!!!!!!!!!!!!!!!3=2+1;!!i.e.!string,!versus!QM!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Trang 50A Dual Description: QM
In M-theory, strings arise as M2 branes suspended between M5 branes Leads to a dual perspective: 3=2+1; i.e string, versus QM
h0j:::D exp(¡¯ 1 H)D exp( ¡¯ 2 H)D ::: j0i
Trang 52hM9jexp(¡¯1H)D exp( ¡¯2H) jM9i
n
Trang 53E+E H
hM9jexp(¡¯1H) exp( ¡¯2H) jM9i
= ZHeterotic
Trang 54!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!E+E!! ! !!H !
hM 9jexp(¡ * 1 H ) exp(¡ * 2 H )jM 9i
= Z H eter oti c
Trang 56!
1^Classificakon!of!maximally!Higgsed!branches!of!(1,0)!theories!completed!(within!F^theory)!
leading!to!a!generalized!ADE!classificakon.!
!
2^Strings!in!the!Coulomb!branch!of!some!of!!
these!theories!are!being!understood!and!used!to!compute!supersymmetry!protected!quankkes!for!the!(1,0)!theory.!