1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Business data communications 5e by stallings chapter 04

17 149 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 199,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Internet Terminology• Central Office CO • Customer Premises Equipment CPE • Internet Service Provider ISP • Network Access Point NAP • Network Service Provider NSP... Connecting to the I

Trang 1

Chapter 5: The Internet

Business Data Communications, 5e

Trang 2

Internet History

• Evolved from ARPANet (Defense

Department’s Advanced Research Projects Agency Network)

• ARPANet was developed in 1969, and was the first packet-switching network

• Initially, included only four nodes: UCLA,

Trang 3

Switching Methods

• Circuit Switching: Requires a dedicated

communication path for duration of transmission; wastes bandwidth, but minimizes delays

• Message Switching: Entire path is not dedicated, but long delays result from intermediate storage and repetition of message

• Packet Switching: Specialized message

switching, with very little delay

Trang 4

Early Applications & Protocols

• Telnet/FTP (1972/73)

• Distributed Email (1972)

• TCP/IP (1982-83)

• DNS (1984)

Trang 5

Internet Components

Trang 6

NSF and the Internet

• In the 1980s, NSFNet extended packet-switched networking to non-ARPA organization;

eventually replaced ARPANet

• Instituted Acceptable Use Policies to control use

• CIX (Commercial Internet eXchange) was

developed to provide commercial

internetworking

Trang 7

The World Wide Web

• Concept proposed by Tim Berners-Lee in 1989, prototype WWW developed at CERN in 1991

• First graphical browser (Mosaic) developed by Mark Andreessen at NCSA

• Client-server system with browsers as clients, and a variety of media types stored on servers

• Uses HTTP (hypertext transfer protocol) for

retrieving files

Trang 8

Internet Terminology

• Central Office (CO)

• Customer Premises Equipment (CPE)

• Internet Service Provider (ISP)

• Network Access Point (NAP)

• Network Service Provider (NSP)

Trang 9

Connecting to the Internet

• End users get connectivity from an ISP

(internet service provider)

– Home users use dial-up, ADSL, cable

modems, satellite

– Businesses use dedicated circuits connected to LANs

• ISPs use “wholesalers” called network

service providers and high speed (T-3 or

higher) connections

Trang 10

Commercial Internet Use

• ARPANet and NSF limited use to research and development

• Early commercial use primarily

information dissemination

• EDI transactions gradually moved to the Internet

• WWW growth in 1990s has led to

Trang 11

Internet Addressing

• 32-bit global internet address

• Includes network and host identifiers

• Dotted decimal notation

– 11000000 11100100 00010001 00111001 (binary)

– 192.228.17.57 (decimal)

Trang 12

Domain Name System

• 32-bit IP addresses have two drawbacks

– Routers can’t keep track of every network path

– Users can’t remember dotted decimals easily

• Domain names address these problems by

providing a name for each network domain (hosts under the control of a given entity)

• See Figure 4.5 for example of a domain name

tree, and table 4.2 for a list of top-level domain

Trang 13

DNS Components

• Domain name space

– Tree-structured name space to identify all internet resources

• DNS database

– Stored in a distributed database

• Name servers

– Server programs that hold information about a specific

portion of the domain name tree

• Resolvers

– Programs that extract information from name servers based

on client requests

Trang 14

DNS Database

• Hierarchical database containing resource records (RRs) (name, IP address, other info about hosts).

• Variable-depth hierarchy for names

– essentially unlimited levels

– uses as the level delimiter in names

• Distributed database:

– resides in DNS servers throughout the Internet

• Distribution controlled by the database

Trang 15

DNS Server Hierarchy

• Each name server configured for a specific local zone

– Includes subdomains and associated RRs

– Authoritative source for that portion of hierarchy

• Root servers are at top of hierarchy

– Different root servers for different top level domains – Some redundancy within domain spaces to prevent bottlenecks

Trang 16

DNS Operation

• User program requests IP address for a domain name

• Resolver module in local host or ISP formulates query for local name server (same domain as the resolver)

• Local name server checks local database/cache

– if found returns IP address to the requestor

– If not found, queries other available name servers, starting down from the root of the DNS tree or as high up the treeas possible.

• When response is received, local name server stores the

Trang 17

DNS Name Resolution

• Query begins with name resolver located in the user host system

• If requested name not in cache, query sent to local DNS server

– returns an address immediately, or

– returns address after querying other servers

• Two possible types of queries

– Recursive

– Iterative

Ngày đăng: 22/08/2017, 11:23

TỪ KHÓA LIÊN QUAN