1. Trang chủ
  2. » Khoa Học Tự Nhiên

invhyp Derivatives, Integrals, and Properties Of Inverse Trigonometric Functions and Hyperbolic Functions

2 256 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 60,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

Derivatives, Integrals, and Properties

Of Inverse Trigonometric Functions and Hyperbolic Functions (On this handout, a represents a constant, u and x represent variable quantities)

Derivatives of Inverse Trigonometric Functions

d

dxsin

¡1u = p 1

1¡ u2

du

dx (juj < 1) d

dxcos¡1u =

¡1 p

1¡ u2

du

dx (juj < 1) d

dxtan¡1u =

1

1 + u2

du dx d

dxcsc

jujpu2¡ 1

du

dx (juj > 1) d

dxsec¡1u =

1 jujpu2¡ 1

du

dx (juj > 1) d

dxcot

1 + u2

du dx

Integrals Involving Inverse Trigonometric Functions

p

a2¡ u2 du = sin¡1³u

a

´ + C (Valid for u2< a2)

a2+ u2 du = 1

atan

¡1³ u a

´ + C (Valid for all u)

up

u2¡ a2 du = 1

asec

¡1¯

¯ua¯¯ + C (Valid for u2> a2)

The Six Basic Hyperbolic Functions

sinh x = e

x

¡ e¡x

2 cosh x = e

x+ e¡x 2 tanh x = sinh x

cosh x=

ex¡ e¡x

ex+ e¡x

sinh x=

2

ex¡ e¡x

cosh x=

2

ex+ e¡x

coth x = cosh x

sinh x =

ex+ e¡x

ex¡ e¡x

Identities for Hyperbolic Functions sinh 2x = 2 sinh x cosh x cosh 2x = cosh2x + sinh2x

cosh2x = cosh 2x + 1

2 sinh2x = cosh 2x¡ 1

2 cosh2x¡ sinh2x = 1 tanh2x = 1¡ sech2x coth2x = 1 + csch2x

Derivatives of Hyperbolic Functions d

dxsinh u = cosh u

du dx d

dxcosh u = sinh u

du dx d

dxtanh u = sech

2udu dx d

dxcoth u = ¡ csch2udu

dx d

dx sechu = ¡ sechu tanh ududx d

dx cschu = ¡ cschu coth ududx

Inverse Hyperbolic Identities

sech¡1x = cosh¡1

µ1 x

csch¡1x = sinh¡1

µ1 x

coth¡1x = tanh¡1

µ1 x

Trang 2

Integrals of Hyperbolic Functions

Z

sinh u du = cosh u + C

Z

cosh u du = sinh u + C

Z

sech2u du = tanh u + C

Z

csch2u du = ¡ coth u + C

Z

sechu tanh u du = ¡ sechu + C

Z

cschu coth u du = ¡ cschu + C

Derivatives of Inverse Hyperbolic Functions

d

dxsinh

¡1u = p 1

1 + u2

du dx d

dxcosh

¡1u = p 1

u2¡ 1

du

dx (u > 1) d

dxtanh

1¡ u2

du

dx (juj < 1) d

dx csch

jujp1 + u2

du

dx (u6= 0) d

dx sech

up

1¡ u2

du

dx (0 < u < 1) d

dxcoth

1¡ u2

du

dx (juj > 1)

Integrals Involving Inverse Hyperbolic Functions

p

a2+ u2 du = sinh¡1³ u

a

´ + C (a > 0)

p

u2¡ a2 du = cosh¡1³ u

a

´ + C (u > a > 0)

a2¡ u2du =

8

>

>

>

>

1

atanh

¡1³ u a

´ + C (if u2< a2) 1

acoth

¡1³ u a

´ + C (if u2> a2)

up

a2¡ u2 du = ¡1a sech¡1³u

a

´ + C (0 < u < a)

up

a2+ u2 du = ¡1a csch¡1¯¯

¯ua¯¯

¯ + C

Expressing Inverse Hyperbolic Functions As Natural Logarithms sinh¡1x = ln(x +p

x2+ 1) (¡1 < x < 1) cosh¡1x = ln(x +p

x2¡ 1) (x¸ 1)

tanh¡1x = 1

2ln

1 + x

1¡ x (jxj < 1) sech¡1x = ln

Ã

1 +p

1¡ x2

x

! (0 < x· 1)

csch¡1x = ln

à 1

x+

p

1 + x2

jxj

! (x6= 0)

coth¡1x = 1

2ln

x + 1

x¡ 1 (jxj > 1)

Alternate Form For Integrals Involving Inverse Hyperbolic Functions

p

u2§ a2 du = ln(u +p

u2§ a2) + C

a2¡ u2 du = 1

2aln

¯

¯a + u

a¡ u

¯

¯

¯ + C

up

a2§ u2du = ¡1aln

Ã

a +p

a2§ u2

juj

! + C

Ngày đăng: 15/06/2017, 09:14

TỪ KHÓA LIÊN QUAN