FRM PART I BOOK 4:VALUATIONAND RISK MODELS VaRMethods 34:Measures ofFinancialRisk 35:QuantifyingVolatilityinVaRModels 36: PuttingVaRtoWork 38: TheBlack-Scholes-Merton Model 39: TheGreek
Trang 1FOR THE HRM1 EXAM
Trang 2FRM PART I BOOK 4:
VALUATIONAND RISK MODELS
VaRMethods
34:Measures ofFinancialRisk
35:QuantifyingVolatilityinVaRModels
36: PuttingVaRtoWork
38: TheBlack-Scholes-Merton Model
39: TheGreek Letters
40:Prices,DiscountFactors,andArbitrage
41:Spot,Forward,and ParRates
42:Returns,Spreads,andYields
43:One-FactorRisk Metrics andHedges
44: Multi-Factor RiskMetricsandHedges
45: Empirical ApproachestoRiskMetricsand Hedges
46:Country Risk Models
47:External and Internal Ratings
48:Loan Portfolios and Expected Loss
49: UnexpectedLoss
50: Operational Risk
51 :StressTesting
52:Principlesfor SoundStressTestingPracticesandSupervision
SELF-TEST:VALUATIONANDRISKMODELS
12
23
3556
7087105125141159
175
192205- -
216223
233’
243
249
262271
Trang 3Printed in the United States of America.
ISBN: 978-1-4277-4473-9 / 1-4277-4473-4 PPN: 3200-3232
Required Disclaimer:GARP®does not endorse, promote, review, or warrant the accuracy of the products or services offered by Kaplan Schweser ofFRM®related information, nor does it endorse any pass rates claimed
by the provider Further,GARP®is not responsible for any fees or costs paid by the user to Kaplan Schweser, nor isGARP®responsible for any fees or costs of any person or entity providing any services to Kaplan Schweser FRM®, GARP®, and Global Association of RiskProfessionals™are trademarks owned by the
Global Association of Risk Professionals, Inc.
GARP FRM Practice Exam Questions are reprinted with permission Copyright 2012, Global Association of
Trang 4READING ASSIGNMENTS AND AIM
STATEMENTS
Thefollowingmaterialis a reviewofthe Valuation and Risk Modelsprinciples designedto
address theAIMstatements setforthbytheGlobalAssociationofRiskProfessionals.
READING ASSIGNMENTS
Kevin Dowd,Measuring MarketRisk,2ndEdition(WestSussex,England:JohnWiley&
Sons, 2005).
34.“MeasuresofFinancialRisk,”Chapter2
LindaAllen,JacobBoudoukhandAnthonySaunders, UnderstandingMarket,Credit and
OperationalRisk:The ValueatRiskApproach
35- “QuantifyingVolatilityinVaRModels,”Chapter2
36 “Putting VaRtoWork,”Chapter3
JohnHull,Options,Futures,andOtherDerivatives,8th Edition(NewYork:Pearson
38.“TheBlack-Scholes-MertonModel,”Chapter14
39.“The GreekLetters,”Chapter18
BruceTuckman,FixedIncomeSecurities,3rdEdition(Hoboken,NJ: JohnWiley&
Sons,2011)
40.“Prices, Discount Factors,andArbitrage,”Chapter1
41 “Spot,Forward,andParRates,”Chapter2
42.“Returns,Spreads andYields,”Chapter3
43.“One-FactorRisk MetricsandHedges,” Chapter 4
44.“Multi-FactorRiskMetricsandHedges,” Chapter 5
45.“EmpiricalApproachestoRiskMetricsandHedges,”Chapter 6
Caouette,Altman,Narayanan,andNimmo,Managing CreditRisk,2ndEdition
(NewYork:JohnWiley&Sons,2008)
(page125)
(page141)
(page159)
(page175)(page192)
(page205)
(page216)
46 “Country RiskModels,”Chapter23
Trang 5Arnaud de Servigny and OlivierRenault,Measuring and Managing CreditRisk(NewYork:McGraw-Hill, 2004).
47 “External and Internal Ratings,” Chapter2
MichaelOng,Internal CreditRiskModels:CapitalAllocationandPerformance
Measurement(London:RiskBooks,2003).
48.“LoanPortfoliosandExpectedLoss,”Chapter 4
49.“UnexpectedLoss,”Chapter5
JohnHull,RiskManagementandFinancialInstitutions,2nd Edition(Boston:Pearson
Prentice Hall,2010).
(page223)
(page233)
(page243)
50 OperationalRisk,”Chapter 18 (page249)
PhilippeJorion, Value-at-Risk: The New BenchmarkforManaging Financial Risk,
3rdEdition.(NewYork: McGrawHill, 2007)
51.“Stress Testing,” Chapter 14 (page262)
52.“Principlesfor Sound Stress TestingPracticesand Supervision”(BaselCommitteeon
BankingSupervisionPublication,Jan2009). (page271)
Trang 6Book 4Reading Assignmentsand AIMStatements
AIM STATEMENTS
34 Measures of Financial Risk
Candidates,aftercompletingchisreading, shouldbe ableto:
1 Describe themean-varianceframework andtheefficientfrontier,(page23)
2 Explain the limitations of themean-varianceframework withrespect to
assumptions about thereturn distributions,(page25)
3 DefinetheValue-at-Risk(VaR)measureofrisk,describe assumptions aboutreturn
distributions andholdingperiod, andexplainthe limitations of VaR.(page 26)
4 Define the propertiesofacoherentriskmeasureandexplainthe meaningofeach
property,(page27)
5- Explain why VaRisnot acoherent riskmeasure,(page28)
6 Explainand calculateexpected shortfall(ES),and compareandcontrastVaR and
ES (page28)
7 Describespectralriskmeasures,andexplain howVaRand ESarespecialcasesof
spectral riskmeasures,(page29)
8 Describe howtheresults ofscenarioanalysiscanbeinterpretedascoherent risk
measures,(page29)
35 QuantifyingVolatilityin VaR Models
Candidates,aftercompletingthis reading, shouldbeableto:
1 Explainhowasset returndistributionstendtodeviate from thenormaldistribution
(page35)
2 Explain potentialreasonsfortheexistenceof frit tailsina returndistribution and
describe the implications fat tails haveonanalysisofreturn distributions,(page35)
3 Distinguishbetweenconditional and unconditionaldistributions,(page35)
4 Describethe implications ofregimeswitchingonquantifying volatility, (page37)
5 .Explain thevariousapproaches forestimating VaR.(page38)
. ' 6 Compare,contrastand calculate parametric andnon-parametricapproaches for
estimating conditional volatility,including:
• Historicalstandard deviation
9 Explain longhorizon volatility/VaRand the process ofmeanreversionaccordingto
anAR(l)model,(page49)
36 PuttingVaRtoWork
Candidates,aftercompletingthisreading, should be ableto:
1. Explain andgiveexamples of linear and non-linearderivatives,(page56)
2 Explain bowtocalculateVaRforlinearderivatives,(page58)
3 Describethedelta-normal approachtocalculatingVaR fornon-linear derivatives
(page58)
Trang 74 Describe the limitationsof the delta-normalmethod,(page58)
5 Explain the fullrevaluationmethodforcomputingVaR.(page62)
6 Comparedelta-normaland fullrevaluationapproaches, (page62)
7 Explain structural MonteCarlo,stresstesting andscenario analysismethodsforcomputingVaR,identifying strengthsand weaknessesof each approach, (page62)
8 Describe theimplicationsof correlation breakdown forscenarioanalysis, (page62)
9 Describeworst-casescenario(WCS)analysis and compareWCStoVaR (page65)
37 BinomialTrees
Candidates,aftercompletingthisreading,should be ableto:
1. Calculate the valueofaEuropean callor putoption using theone-stepand
two-stepbinomialmodel, (page70)
2 Calculatethe valueofanAmericancallorputoption usinga two-stepbinomial
3 Describe how volatilityiscapturedinthebinomialmodel,(page77)
4 Describe how the binomial model value convergesastimeperiodsareadded
(page80)
5 Explainhow the binomial modelcanbealteredtoprice optionson:stocks withdividends,stockindices, currencies,andfutures,(page77)
38 TheBlack-Scholes-MertonModel
Candidates,aftercompletingthisreading, should be ableto:
1. Explainthelognormalpropertyofstockprices,the distribution ofratesofreturn,andthecalculationofexpectedreturn,(page87)
2 Compute the realizedreturnand historicalvolatility ofa stock,(page87)
3 List anddescribe the assumptions underlying the Black-Scholes-Merton optionpricingmodel,(page90)
4 Computethe valueofaEuropeanoption usingtheBlack-Scholes-Merton modelon
anondividend payingstock,(page91)
• • 5- Identify rhecomplications involvingthevaluationofwarrants,(page97)
6.- Defineimpliedvolatilities and describe howto computeimpliedvolatilitiesfrom
.market pricesofoptions usingthe Black-Scholes-Mertonmodel,(page97)
7 Explainhowdividendsaffect the earlydecisionfor American call andputoptions.(page96)
8 Compute thevalueofaEuropeanoption usingthe BlackjScholes-Mertonmodelon
adividend payingstock,(page93)
9 UseBlacksApproximationto computethevalue ofan Americancalloption ona
dividend-payingstock,(page96)
39 TheGreekLetters
Candidates,after completing this reading, should be ableto:
1 Describe and assesstherisksassociatedwith nakedandcoveredoption positions.(page105)
Trang 8Back 4 Reading Assignments and AJM Statements
8 Explain howtoimplement andmaintainagamma neutralposition,(page113)
9 Describe the relationshipbetweendelta,theta, andgamma,(page113)
10. Describehowhedgingactivitiestake placein practice, and describe howscenario
analysiscanbeusedtoformulateexpectedgains and losses withoption positions
(page119)
11 Describe howportfolioinsurancecanbe createdthroughoptioninstrumentsand
stock indexfutures,(page120)
40 Prices,Discount Factors,andArbitrage
Candidates,aftercompleting thisreading,should be ableto:
1 Define discount factor anduseadiscount functionto compute presentand future
values,(page128)
2 Definethe “lawofoneprice,”explainit usinganarbitrageargument,anddescribe
how it can beappliedtobond pricing,(page130)
3 Identify thecomponentsofaU.S Treasury couponbond, andcompare and
contrasrthestructure toTreasurySTRIPS,including thedifferencebetween
P-STRIPSand C-STRIPS.(page132)
-4 Constructareplicating portfoliousingmultiple fixedincome securitiestomatch
the cash flowsofagiven fixedincome security,(page133)
5 Identify arbitrageopportunitiesfor fixedincome securities withcertaincash flows
(page130)
6 Differentiate between “clean” and“dirty”bond pricing and explaintheimplications
of accrued interestwith respect tobond pricing, (page134)
7 Describethe commonday-countconventionsusedinbondpricing,(page134)
41.Spot,Forward,and Par Rates
Candidates,after completingthisreading,should be ableto:
1. Calculateand describe theimpactof differentcompoundingfrequencieson-a
bondsvalue,(page141) - '
-2 Calculatediscount factorsgiven interestrateswaprates,(page142)
3 Computespot ratesgivendiscountfactors,(page144)
4 Define and interprettheforwardrate,andcomputeforwardratesgivenspot rates.
(page146)
5 Define parrateand describethe equationfortheparrateofa bond,(page148)
6 Interpret therelationship betweenspot,forward and parrates,(page149)
7 Assesstheimpactofmaturityonthepriceofabondandthereturnsgeneratedby
bonds,(page151)
8 Define the“flattening”and“steepening” ofrate curvesandconstructahypothetical
traderoreflectexpectations thatacurvewillflattenor steepen,(page151)
42 Returns,Spreads,andYields
Candidates,aftercompletingthis reading, should be ableto:
1. Distinguishbetweengross andnetrealizedreturns,and calculate the realizedreturn
forabond overaholdingperiodincludingreinvestments,(page159)
2 Define and interpret thespreadofabond,andexplainhowaspreadisderivedfrom
abond priceanda term structureofrates,(page161)
3 Define, interpret,andapplyabond’s yield-to-maturity(YTM)tobond pricing
(page161)
4 Computeabond’s YTM givenabondstructureandprice,(page161)
5 Calculate thepriceofanannuityandaperpetuity, (page165)
Trang 96 Explainthe relationship berweenspot ratesandYTM (page166)
7 Definethe coupon effect and explain the relationship between couponrate, YTM,
and bondprices,(page167)
S Explain the decomposition oi P&Lfor abondintoseparatefactors includingcarryroll-down,ratechangeandspreadchangeeffects,(page168)
9 Identifythemostcommon assumptionsin carry roll-downscenarios,including
realizedforwards,unchangedterm structure,and unchangedyields,(page169)
43 One-FactorRiskMetricsand Hedges
Candidates,aftercompletingthisreading, shouldbe ableto:
1. Describeaninterestratefactorandidentifycommonexamplesofinterestrate
6 Define,compute,and interpret theconvexityofafixed incomesecuritygivena
changeinyieldand theresultingchangein price,(page181)
7 Explainthe process ofcalculatingtheeffective durationand convexityofaportfolio
offixedincomesecurities,(page183)
8 Explainthe impact of negative convexityonthehedgingof fixedincome securities.(page184)
9 Constructabarbellportfoliotomatch thecostand durationofagiven bulletinvestment, andexplaintheadvantagesanddisadvantagesof bulletversusbarbellportfolios.-(page185)
44 Multi-FactorRisk Metrics andHedges
Candidates,after completing thisreading,should beableto: .
1 Describeandassessthe major weaknessattributabletosingle-factor approaches
whenhedging portfoliosorimplementingassetliability techniques, (page192)
2 Define keyrateexposures and knowthe characteristicsof keyrateexposure factors
_ including partial‘01sandforward-bucket‘01s.(page193)
3 Describe key-rateshift analysis, (page193)
4 Define, calculate,and interpret keyrate‘01and keyrate duration,(page194)
5 Describe the keyrateexposuretechniqueinmulti-factorhedgingapplicationsandsummarizeitsadvantagesanddisadvantages, (page195)
6 Calculatethekeyrateexposures foragivensecurity,andcomputetheappropriatehedgingpositionsgivenaspecific keyrateexposureprofile,(page195)
7- Describe therelationshipbetween keyrates,partial‘01s and forward-bucket‘01s,
andcalculatetheforward-bucket‘01forashiftin in one or morebuckets
Trang 10Book4Reading Assignmentsand AIMStatements
45 EmpiricalApproachestoRiskMetrics andHedges
Candidates,aftercompletingthis reading,shouldbeableto:
I Explainthe drawbackstousingaDVO1-neutral hedge forabondposition
(page205)
2. Describearegression hedge andexplainhowitimprovesonastandard
DV01-neutralhedge, (page206)
3- Calculate the regressionhedge adjustmentfactor,beta,(page207)
4 Calculatethefacevalueofanoffsettingpositionneededtocarryout aregression
hedge,(page207)
5 Calculatetheface value ofmultipleoffsettingswappositionsneededtocarryouta
two-variable regressionhedge, (page208)
6 Compareandcontrastbetween levelandchange regressions,(page209)
7- Describeprincipalcomponentanalysisand explain howitisappliedinconstructing
ahedging portfolio,(page209)
46 CountryRisk Models
Candidates,aftercompletingthis reading, shouldbeableto:
1 Defineand differentiatebetweencountryriskandtransfer riskanddescribesomeof
thefactors that mightleadto each,(page216)
2 Describecountryriskinahistoricalcontext,(page216)
3 Identifyand describesomeofthe majorriskfactors thatarerelevantforsovereign
riskanalysis, (page217)
4 Compare andcontrast corporateandsovereignhistorical defaultrate patterns.
(page218)
5 Explainapproaches for andchallengesin assessingcountry risk,(page218)
6 Describehowcountryrisk ratingsareusedinlendingandinvestmentdecisions
(page219)
7 Describesomeof thechallengesin countryrisk analysis,(page219)
47 External and InternalRatings
Candidates,aftercompletingthisreading,shouldbe ableto:
1 Describeexternalraring scales,theratingprocess, andthelinkbetweenratingsand
default,(page223)
2 Describe theimpactoftime horizon, economiccycle, industry, andgeographyon
external ratings,(page225)
3 Review the results andexplanationof the impact of ratings changesonbondand
stockprices,(page226)
4 Compareexternalandinternalratingsapproaches, (page226)
5 Explainandcompare thethrough-the-cycleandat-the-pointinternalratings
approaches,(page227)
6 Defineandexplainaratings transitionmatrixanditselements,(page224)
7 Describetheprocess for andissueswithbuilding, calibratingand backtestingan
internalratingsystem,(page227)
8 Identifyand describe thebiasesthat may affectaratingsystem,(page228)
Trang 1148 Loan PortfoliosandExpected Loss
Candidates,after completing this reading, should be ableto:
I Describe the objectives ofmeasuring credit riskforabanks loanportfolio
(page233)
2 Define,calculate and interpret the expectedlossforanindividual credirinstrument
(page236)
3 Distinguish between loan and bond portfolios, (page233)
4 Explainhowacreditdowngradeorloan defaultaffects thereturnofaloan
(page234)
5 Distinguish betweenexpectedand unexpectedloss,(page234)
6 Define exposures, adjusted exposures,commitments, covenants,andoutstandings:
• Explainhow drawnandundrawnportionsofa commitmentaffect exposure
* Explainhowcovenantsimpactexposures
(page234)
7 Define usage given default and howitimpactsexpectedandunexpectedloss.(page236)
8 Explain theconceptofcreditoptionality.(page236)
9 Describethe process of parameterizing credit risk models anditschallenges
(page237)
49 Unexpected Loss
Candidates,aftercompletingthis reading, should be ableto:
1 Explainthe objective forquantifying bochexpected and unexpectedloss,(page243)
2 Describefactorscontributingtoexpected and unexpectedloss,(page243)
3 Define,calculate and interpret the unexpected loss ofan asset,(page244)
4 Explaintherelationshipbetween economic capital, expectedloss andunexpected
loss,(page245)
50 OperationalRisk
Candidates,aftercompletingthis reading, shouldbeableto:
1 Calculatetheregulatorycapitalusingthe basic indicatorapproachandthestandardizedapproach,(page250)
2 Explainthe Basel Committee’s requirements for the advancedmeasurement
approach(AMA)and theirsevencategories of operationalrisk,(page250)
3 Explainhowtogeealossdistributionfrom the loss frequency distribution andtheloss severity distributionusingMonteCarlosimulations,(page252)
4 Describe the commondataissuesthatcanintroduceinaccuraciesandbiases in theestimationof lossfrequencyandseveritydistributions,(page253)
5- Describehowtousescenarioanalysis ininstanceswhen thereis scarcedata
(page254)
6 Describe howtoidentifycausal relationshipsand howtouseriskandcontrolselfassessment (RCSA)and key riskindicators(KRIs) tomeasureandmanageoperationalrisks,(page254)
Trang 12Book 4
ReadingAssignments and AIM Statements
51- StressTesting
Candidates,aftercompletingthis reading, shouldbeableto:
1. Describethepurposes ofstresstesting and theprocess ofimplementinga stress
testingscenario,(page262)
2. Contrast between event-drivenscenariosandportfolio-drivenscenarios,(page263)
3 Identifycommonone-variablesensitivitytests,(page263)
4 DescribetheStandardPortfolio Analysis of Risk(SPAN®)systemformeasuring
portfoliorisk,(page263)
5 Describethedrawbackstoscenarioanalysis,(page264)
6 Explain the differencebetweenunidimensionalandmultidimensionalscenarios
(page264)
7 Compareandcontrastvariousapproachesto scenarioanalysis,(page265)
8 Define and distinguishbetweensensitivity analysis andstresstesting model
9 Explainhow the results ofa stress testcan be usedtoimproveourrisk analysis and
52 Principles forSound StressTestingPracticesand Supervision
Candidates,after completing this reading, should be ableto:
1 Describe the rationale for theuseofstresstestingas ariskmanagementtool
(page271)
2. Describe weaknesses identifiedandrecommendationsforimprovement in:
• Theuseofstresstesting and integration in risk governance
• Stress testing methodologies
• Stress testingscenarios
• Stress testing handlingofspecificrisksand products.
. (page272)
3.- Describestresstesting principles forbankswithin:
• Useofstresstestingand integration in riskgovernance
• Stress testing methodology andscenarioselecrion
• Principlesfor supervisors •
(page272) ' •
*
Trang 13-EXAM FOCUS
Valueat risk(VaR)wasdevelopedas anefficient,inexpensivemethod todetermine economicrisk exposure of banks withcomplexdiversifiedassethold ings.Inthisreading,wedefineVaR,demonstrateits calculation,discuss howVaRcan be converted tolonger timeperiods, andexaminetheadvantagesanddisadvantagesof the threemainVaR estimation methods For the
method.VaRis oneof GARPsfavoritetestingtopicsand.irappearsin manyassigned readingsthroughouttheFRM PartIand Part0curricula
DEFINING VAR
Valueat risk(VaR) isaprobabilistic methodof measuring thepotentiallossinportfolio
value overagiventimeperiod and foragiven distribution of historicalreturns.VaRisthedollarorpercentagelossinportfolio(asset)valuethatwill beequaledorexceededonly
ATpercentofthetime.In otherwords,thereisanATpercentprobabilitythatthe lossin
portfoliovalue will beequalto Of greaterthantheVaR measure.VaRcanbecalculatedfor anypercentageprobabilityof loss andoveranytimeperiod.A1%, 5%,and 10% VaRwould be denotedas VaR(l%), VaR(5%),andVaR(10%),respectively.The riskmanagerselects the Xpercentprobabilityofinterestand thetimeperiodoverwhichVaRwill bemeasured Generally, thetimeperiod selected(andtheone wewalluse)is oneday
A briefexamplewillhelp solidify theVaRconcept.Assumeariskmanager calculatesthe.daily5%VaRas $10,000.TheVaR(5%) of$10,000indicatesthat thereis a5% chance that
onany given day, theportfoliowillexperiencealossof$10,000or more.Wecould alsosaythat thereis a95% chancethatonanygiven day theportfoliowill experienceeithera
loss lessthan$10,000or again Ifwefurtherassumethaÿthe$10,000lossrepresents 8%
of theportfoliovalue,thenonanygiven day thereis a5% chance that theportfoliowillexperiencealoss of8%or greater,butthereisa95% chance that thelosswill be lessthan8% ora percentagegaingreaterthanzero
CALCULATING VARCalculatingdelta-normal VaRisasimplematterbut requires assuming thatasset returnsconformto astandard normaldistribution Recall thatastandard normaldistributionis
Trang 14From Figure1, weobservethefollowing: theprobability of observingavaluemorethan
1.28standard deviations below the meanis10%;theprobabilityof observingavaluemore
than1.65standard deviations below themeanis5%;and the probability of observinga
valuemorethan2.33standarddeviationsbelow the mean is 1%.Thus, wehave critical
z-valuesof-1.28, -1.65,and -2.33for1 0%,5%,and1% lower tailprobabilities,
respectively.Wecan nowdefinepercentVaRmathematicallyas:
VaR(X%) =ZX%CT
where:
VaR(X%) =the X%probability' valuearrisk ‘
= the critical z-value basedonthenormal distribution and the selectedX%
probability'
= the standard deviationof dailyreturns on a percentagebasis
Professor'sNote: VaRis aone-tailedtest, so thelevelofsignificanceisentirely
inone tailofthedistribution.Asa result,the criticalvalues will bedifferent
thana two-tailedtestthatusesthesamesignificance level
*X%
a
In ordertocalculateVaR(5%)using this formula,wewould use acriticalz-valueof-1.65
andmultiplyby thestandard deviation ofpercent returns.Theresulting VaRestimate
would bethepercentageloss inassetvalue thatwould only be exceeded 5% of thetime
VaRcan alsobeestimatedonadollarrather thana percentagebasis.TocalculateVaRon a
dollarbasis, wesimply multiplythepercentVaRby theassetvalueasfollows:
VaR(X%)do!krbasis =VaR(X%)dccimdbasls x assetvalue
=(zx%o)x assetvalue
TocalculateVaR(5%)using thisformula,wemultiplyVaR(5%)on a percentagebasisby
thecurrentvalueoftheassetin question This isequivalenttotaking the product ofthe
criticalz-value,the standard deviation of percent returns,andthecurrent assetvalue An
Trang 15estimateofVaR(5%)onadollar basisisinterpretedasthe dollarloss inassetvaluethat willonlybeexceeded 5% ofthe time.
isconsidering addingtothebanksportfolio.If theassethasadaily standard deviation of
returnsequal to 1.4%and theassethasa currentvalueof$5 3million,calculatethe
VaR (5ÿi>)ionbothapercentageanddollarbasis
VaR(5%)=zÿcr=-1.65(0.014)=-0.0231 = -2.31%
TheVaR(5%) onadollar basisiscalculatedasfollows:
' '
Tiyjs,thereisa §%probabilitythat,ohanygiven day,thelossinvalueonthisparticular;
assetwill egualorexceed _.3f%,or $122,430.
.
Ifanexpectedreturnother thanzero is given,VaRbecomes the expectedreturn minusthequantityof the critical value multiplied by the standard deviation
VaR=[E(R)-zo]
In the exampleabove,theexpectedreturnvalueiszeroand thusignored.Thefollowing
example demonstrates howtoapplyanexpectedreturn to aVaR calculation
if|§fi
m
Trang 16VAR CONVERSIONS
VaR, ascalculated previously, measuredthe riskofalossinassetvalueover ashort time
period.Risk managersmay,however,beinterested in measuringriskoverlongertime
periods,suchas a mouth, quarter, oi year.VaRcan beconveiled boma1-daybasis to a
longerbasisbymultiplyingthe dailyVaRbythe squarerootofthe number ofdays (/)in
thelongertimeperiod(called the squareroot rule).Forexample,to convert to aweekly
VaR,multiplythedailyVaR by the squarerootof5(he.,five businessdaysin a week).We
cangeneralizethe conversionmethodasfollows:
= VaR(X%)1ÿ).v/j
VaR(X%)J-days
Example:Converting dailyVaRtoothertimebases
Assumethata riskmanagerhascalculatedthe dailyVaR(10%)doj|arbaS!S 6faparticular
asset tobe $12,500.Cÿculate"the;weeklyyihortt|il.yy>semiannuiyandianpuÿ!\ÿf(-fo|(|Kis
asset.Assume*25,P,days peryear and50 weeks peryear
Answer:
ThedailydollarVaRReconvertedto aweekly,monthly,semiannual, andannualdollar
VaR,measurebytmultiplying hy?thesquarerootof anjÿ507jespectively.
Trang 17VaRcanalso be convertedtodifferentconfidencelevels For example,ariskmanager may
Thisconversion isdone byadjustingthecurrentVaRmeasureby theratiooftheupdated
confidence leveltothecurrentconfidence level
-r-ipsti
./;/C ,;;V
VaRv
THE VAR METHODS
The threemainVaRmethodscanbedividedintotwogroups:linear methodsandfullvaluationmethods
1 Linearmethodsreplaceportfoliopositionswith linear exposuresonthe appropriate riskfactor.Forexample, the linear exposure used for optionpositionswould bedelta while.the linear exposure forbondpositions would be duration.This method is usedwhen
calculatingVaR withthedelta-normalmethod
2 Full valuation methods fully repricetheportfoliofor eachscenarioencounteredovera
historical period,orovera greatnumberofhypotheticalscenariosdeveloped through
historical simulationorMonteCarlo simulation.ComputingVaR using full revaluation
is morecomplexthan linear methods.However,thisapproach willgenerallyleadto
moreaccurateestimatesof riskinthelongrun. _
LinearValuation: The Delta-Normal Valuation Method
The delta-normalapproach beginsbyvaluingthe portfolioatan initialpointas a
relationshiptoaspecificriskfactor,5(consideronlyoneriskfactorexists):
V0 = V(S0)
Trang 18VaR Methods
Here,A0isthe sensitivityoftheportfoliotochangesintheriskfactor,5.Aswithanylinear
relationship,thebiggest changein thevalueoftheportfoliowillaccompanythebiggest
changeintheriskfactor TheVaRat agiven level ofsignificance,z, canbewritten as:
VaR= [A0| x(zaS0)
where:
zaS0 = VaRs
horizonsthan longer horizons
Consider,forexample,afixedincomeportfolio.The riskfactor impacting the value of
thisportfolioisthe change inyield.TheVaRof thisportfoliowould then be calculatedas
follows:
VaR= modified durationx z xannualized yield volatilityxportfoliovalue
Noticehere thatthevolatilitymeasureappliedis thevolatility of changesin theyield In
future examples,thevolatilitymeasuredusedwillbe the standard deviation ofreturns.
Since thedelta-normal methodisonlyaccuratefor linear exposures, non-linearexposures,
such as convexity,are notadequatelycapturedwiththisVaR method.ByusingaTaylor
series expansion, convexitycanbe accountedfor inafixedincomeportfoliobyusing what
isknown as thedelta-gamma method You willseethis methodinTopic36.Fornow,just
takenotethatcomplexitycanbe addedtothedelta-normalmethodtoincrease its reliability
when measuringnon-linear exposures
Full Valuation:MonteCarlo andHistoricSimulation Methods
The Monte Carlosimulationapproach revaluesaportfolioforalarge numberofriskfactor
values,randomly selected fromanormal distribution Historicalsimulationrevaluesa
portfoliousing actual valuesforriskfactorstakenfrom historicaldata Thesefullvaluation
approachesprovidethemost accurate measurementsbecause they include all nonlinear
relationshipsandotherpotentialcorrelationsthatmaynotbe includedin the linear
valuation models
COMPARINGTHEMETHODS
Thedelta-normal methodisappropriate forlarge portfolioswithoutsignificant option-like
exposures This methodisfastand efficient
Full-valuationmethods,eitherbasedonhistorical dataoron MonteCarlosimulations, are
more timeconsuming and costly.However,theymay be theonlyappropriatemethodsfor
largeportfolioswithsubstantial option-like exposures,awiderrange of riskfactors,ora
longer-term horizon
Trang 19Delta-Normal Method
The delta-normal method (a.k.a.thevariance-covariancemethodorthe analyticalmethod)
for estimatingVaR requiresthe assumption ofanormal distribution Thisisbecause themethod utilizes theexpectedreturnand standard deviationofreturns.Forexample,in
calculatingadailyVaR, wecalculate the standard deviation of dailyreturnsin thepastandassumeitwillbeapplicabletothefuture.Then,usingtheassetsexpected1-dayreturnandstandard deviation,weestimatethe1-day VaRat the desired levelof significance
The assumption ofnormalityistroublesome because manyassetsexhibit skewedreturndistributions(e.g.,options), andequityreturnsfrequentlyexhibit leptokurtosis(fattails) Whenadistribution has“fattails,”VaRwilltendtounderestimate the loss anditsassociatedprobability.Also knowthat delta-normal VaRiscalculated using the historicalstandarddeviation,whichmaynotbe appropriate if thecomposition oftheportfoliochanges, ifthe estimationperiodcontained unusualevents, orifeconomicconditionshave
changed
Example: Delta-normal VaR
«
1-dayreturnfor a$100,000,(100portfoliois0.00085an.
deviationof daily.tetufnsisj).0,01.1.Calculate daily valueat r
ToIpcate thevalue fora 5%VaR,we usetheAlternative Tablein t
book.We lookthrough the bodyofthe table untilwefindthevaluefor In thiscase, we want5%indie lowertail,which wouldleave45
thatis notinthe tail.Searchingfor0.45,we find the value0.4505(t
Youwill alsofindaCumulativeViableinthe appendix When usinglook directlyforthesignificancelevelof the VaR:Forexample, ifyou
fook for the value in the tablewhichiscldsescto(1-significahceleve0.9500.Youwillfind0.9505,whichliesattheintersectionof 1.6int0.05in the columnheading
Trang 20Rp— expected1-dayreturn on theportfolio
Vp— value;of theportfolio
z = z-valuecorrespondingwiththedesiredlevelofsignificance
O = standard deviationof1-dayreturns
The imerpretation ofthisVaRisrhatthere isa5%chancetheminimum 1-day lossis
0.0965%, or $96,500.(There is5%probabilitythat thell-daylosrwillexceed$96,500.)
Alternatively,wecould saywe are95%confidentthe1-dayloss willnotexceed$96,500.
Ifyou aregiventhe standarddeviation of annualreturnsand needtocalculateadaily VaR,
the daily standard deviationcan be estimatedastheannual standard deviation divided by
thesquarerootof the number of(trading)days ina year,andsoforth:
CTdaiiy = \f25Q l*7 monthly= Jn
Delta-normalVaRisoften calculatedassuminganexpectedreturnofzeroratherthan the
portfoliosactual expectedreturn.Whenthisis done,‘VaRcanbeadjustedtolongeror
-shorterperiods oftimequiteeasily For example, dailyVaRis-estimatedasannualVaR
divided bythesquare rootof 250(aswhenadjustingthestandarddeviation).
Likewise,the annualVaRisestimated as the daily VaRmultipliedbythesquarerootof
250 If thetrueexpectedreturn isused,VaRfordifferentlengthperiodsmustbe calculated
independently
ProfessorsNote: Assuminga zeroexpectedreturn whenestimating VaRisa
conservativeapproachbecause thecalculatedVaRwill begreater (i.e.,fartheroutin
the tailofthedistribution)thaniftheexpectedreturn isused
Sinceportfoliovaluesarelikelytochangeoverlongtimeperiods,it isoften thecasethat
VaRoverashorttimeperiodiscalculated andthen convertedtoalongerperiod.The Basel
Accord(discussedintheFRM Part IIcurriculum)recommends theuse ofatwo-week
period(10days)
Professor’sNote: For theexam,youwilllikelyberequiredtomakethesetime
conversationcalculationssince VaRisoftencalculatedover ashorttimeframe.
Trang 21Advantages of the delta-normalVaRmethod includethefollowing:
• Easytoimplement
• Calculationscanbeperformedquickly
• Conducivetoanalysisbecauseriskfactors,correlations,and volatilitiesareidentified
Disadvantagesof the delta-normalmethodinclude thefollowing:
• Theneedtoassumeanormaldistribution
• The methodisunabletoproperlyaccountfordistributions with fartails,rirhrr because
ofunidentifiedtime variation inriskorunidentified riskfactors and/or correlations
• Nonlinearrelationships of option-likepositionsarenotadequatelydescribedbythedelta-normal method VaRismisstated becausetheinstabilityof the option deltasisnot
captured
HistoricalSimulation Method
Thehistorical method for estimating VaRisoften referredtoasthehistorical simulationmethod.Theeasiestwaytocalculatethe5% dailyVaR using the historicalmethodistoaccumulateanumberofpastdailyreturns,rank thereturnsfromhighesttolowest,and
identifythelowest 5%ofreturns.Thehighestofthese lowest 5% ofreturnsisthe 1-day,5%VaR
tail
Example:HistoricalVaRYouhaveaccumulated100dailythereturnsfromhighesttolowest,youidentifythe lowest' — m
Thelowestfivereturns representthe 5% lower tail'of the “d:
returns.Thefijffilowestreturn'(-0.0019)is*the 5‘
59hchanceofadailylossexceeding0.19%,or $1 '
&
AsyouwillseeinTopic35,the historical simulation methodmayweightobservationsand takeanaverageoftwo returns toobtainthehistorical VaR.Eachobservationcanbeviewedashavingaprobabilitydistributionwith50%totheleft and 50%totherightofa
given observation Whenconsideringthe previous example, 5%VaRwith100observationswould take the averageofthe fifth and sixthobservations[i.e., (—0.0011 +—0.0019) /
2=-0.0015] Therefore,the 5% historical VaRin thiscasewould be$150,000.Either
Trang 22VaR Methods
Advantagesof the historical simulationmethodinclude thefollowing:
• The modelis easy toimplementwhenhistoricaldata isreadily available
• Calculationsaresimpleandcanbeperformedquickly
• Horizonisapositivechoicebasedontheintervals of historicaldata used
• Full valuationofportfolioisbasedonactualprices
• Itis notexposedtomodel risk
• It includes all correlationsasembeddedin marketpricechanges
Disadvantagesof thehistorical simulation method includethe following:
• It maynotbeenoughhistoricaldatafor allassets.
* Onlyonepathofeventsisused(theactualhistory), which includeschangesin
correlations andvolatilitiesthatmayhave occurred onlyinthathistorical period
* Timevariationofrisk inthepastmaynot representvariation inthefuture
• Themodel maynotrecognizechangesinvolatilityandcorrelationsfrom structural
changes
* Itisslowtoadaptto newvolatilitiesandcorrelationsasolddata carriesthesameweight
asmorerecentdata.However,exponentiallyweightedaverage(EWMA)modelscanbe
usedtoweighrecentobservationsmoreheavily
* Asmall numberof actualobservationsmay leadtoinsufficiently defined distribution
tails
MonteCarlo Simulation Method
The MonteCarlomethodrefersto computersoftware thatgenerateshundreds,thousands,
or evenmillionsofpossibleoutcomesfrom the distributions ofinputsspecifiedby theuser
For example,aportfolio managercouldenter adistributionofpossible1-weekreturnsfor
eachof thehundreds ofstocksinaportfolio On each “run”(thenumberof runs isspecified
bytheuser),thecomputerselectsoneweeklyreturnfrom eachstocksdistribution of
possiblereturnsand calculatesaweightedaverageportfolioreturn.
The severalthousandweightedaverageportfolioreturnswillnaturallyformadistribution,
whichwill approximatethenormal distribution Using the portfolio expectedreturnand
thestandarddeviation,whichare partof theMonteCarlooutput,VaR iscalculatedin the
same way aswith thedelta-normalmethod,
Trang 23>le:Monte Carlo VaR
Advantagesof theMonteCarlomethod include thefollowing:
• Itisthemostpowerfulmodel
• Itcanaccountfor both linear and nonlinear risks
• Itcanincludetimevariationin risk andcorrelationsbyagingpositionsoverchosenhorizons
• Itisextremely flexible andcan incorporate additional riskfactors easily
• Nearlyunlimited numbers ofscenarios canproduce well-describeddistributions
DisadvantagesoftheMonteCarlomethod include thefollowing:
• Thereis alengthycomputationtime asthenumberof valuationsescalatesquickly
• Itis expensivebecauseof the intellectual andtechnologicalskills required
• Itissubjecttomodel riskof the stochastic processes chosen
4 Itissubjecttosamplingvariationatlower numbersof simulations
Forpracticequestions relatedtoVaRMethods see:
PastFRMExamQuestions:#1-7(page291)
Trang 24The following is a review of the Valuation and Risk Models principles designed to address the AIM statements
set forth byCARP®.This topic is also covered in:
MEASURES OF FINANCIAL RISK
Topic34
EXAM FOCUS
The assumption regarding the shape of the underlying return distribution is critical in
determininganappropriate risk measure.Themean-varianceframeworkcanonlybeapplied
underthe assumptionofanelliptical distributionsuchasthenormal distribution The valueat
risk(VaR) measurecancalculateriskmeasureswhen thereturndistributionisnon-elliptical,
butthemeasurementisunreliableandnoestimateof theamountoflossisprovided.Expected
shortfallis a morerobust risk measure thatsatisfies alltheproperties ofacoherentrisk measure
with lessrestrictive assumptions.Fortheexam,focusyourattentiononthe calculation ofVaR,
properties of coherent riskmeasures,and theexpectedshortfallmethodology
MEAN-VARIANCE FRAMEWORK
AIM34.1;Describethemean-varianceframework and theefficient frontier
Thetraditionalmean-variancemode! estimates theamountoffinancialriskfor portfolios
intermsoftheportfolio’sexpectedreturn (i.e., mean)and risk(i.e.,standarddeviation
orvariance).Under themean-variance framework, it isnecessaryto assumethatreturn
distributionsfor portfoliosareelliptical distributions Themostcommonlyknownelliptical
probabilitydistributionfunctionisthe normaldistribution
Thenormaldistributionis acontinuousdistributionth.atillustratesallpossibleoutcomes
forrandom variables.Recallthat-thestandard normaldistributionhasameanofzeroand
astandarddeviationofone.Ifreturns arenormallydistributed,approximately 66.7% of
returnswilloccurwithinplusorminus onestandard'deviationof themean.Approximately
95% oftheobservationswill occur withinplusor minus twostandarddeviationsof the
mean Thus,giventhistypeofdistribution, returns are morelikelytooccur closertothe
Portfoliomanagersareconcerned withmeasuring downside riskandthereforeare
particularly interestedin measuringthepossibilityofoutcomes tothe leftorbelow
theexpectedmeanreturn.If thereturndistributionissymmetrical(likethe normal
distribution),then thestandarddeviationis anappropriatemeasureof risk when
determiningtheprobabilitythatanundesirableoutcomewilloccur.
Ifweassume thatreturndistributionsforallriskysecurities arenormallydistributed,
then we can chooseportfoliosbasedontheexpectedreturnsand standard deviations of
allpossiblecombinationsof risky'securities.Figure1below illustrates theconceptofthe
efficient frontier
Trang 25In theory,all investorsprefersecurities orportfoliosthatlieontheefficient frontier.
Consider portfoliosA, B,and Cin Figure1.Ifyouhadtochoose betweenportfoliosA
andC,whichonewould youpreferand why? SinceportfoliosAand C havethe sameexpectedrerurn,arisk-averseinvestorwould choose theponfoliowiththeleastamountof
risk(whichwould be PortfolioA).Nowifyou hadtochoose between portfolios B andC,
whichonewouldyouchoose andwhy?BecauseportfoliosB and C have thesameamount
ofrisk, arisk-averseinvestor wouldchoose the portfolio with thehigher expectedreturn
(whichwould be PortfolioB).We say thatPortfolio B dominates Portfolio C with respect to
expectedreturn,andthat PortfolioAdominatesPortfolioCwithrespect torisk.Likewise,allportfoliosontheefficient frontier dominate all other portfoliosintheinvestment
universeof riskyassetswithrespect toeitherrisk,return,orboth
Therearean almost unlimited number of combinations of riskyassets totherightandbelow the efficientfrontier.However,in the absenceofarisk-freesecurity,portfoliostotheleft and above the efficientfrontierare notpossible.Therefore,allinvestorswillchoose
someportfolioontheefficient frontier Ifan investoris morerisk-averse,she may choosea
portfolioonthe efficientfrontierclosertoPortfolioA.Ifan investor islessrisk-averse,shewillchooseaportfolioonthe efficientfrontierclosertoPortfolioB
Figure1 :TheEfficientFrontier
Ifwenowassume thatthereisa risk-freesecurity, thenthemean-varianceframeworkisextendedbeyondthe efficientfrontier.Figure2illustratesthat the optimalsetofportfolios
nowlieon astraightline that runsfrom the risk-freesecuritythroughthemarketportfolio,
M.Allinvestorswillnowseekinvestmentsbyholdingsomeportionoftherisk-freesecurityandthe marketportfolio To achieve pointson thelinetothe right of the marketportfolio,
aninvestorwhoisvery aggressivewill borrowmoney (atthe risk-freerate)andinvestinmoreof themarketportfolio.More risk-averse investorswillholdsomecombinationoftherisk-freesecurityand the marketportfoliotoachieve portfoliosonthelinesegmentbetweenthe risk-freesecurityand the marketportfolio
Trang 26Figure2:TheEfficientFrontier withthe Risk-FreeSecurity
E(R)
EfficientFrontier
M
Rr
TotalRisk<o>
Mean-Variance FrameworkLimitations
AIM34.2:Explainthelimitations of themean-varianceframework withrespectto
assumptions about thereturndistributions
Theuseof the standard deviationas ariskmeasurementisnotappropriate fornon-normal
distributions.Iftheshapeofthe underlyingreturndensity functionis notsymmetrical,
then thestandarddeviationdoesnot capturethe appropriateprobability ofobtaining
undesirablereturn outcomes.
Figure3illustratestwoprobabilitydistributionfunctions.Oneprobabilitydistribution
functionis thenormal distribution witha mean ofzero Theotherprobabilitydistribution
ispositivelyskewed.Thispositivelyskewed distribution hasthe same meanand standard
deviationasthenormaldistribution.Thedegree of skewnessalterstheentiredistribution.
For thepositivelyskeweddistribution, outcomesbelow themean are morelikelyto occur
closertothemean.Clearlynormalityisanimportant assumptionwhen using the
mean-varianceframework.Thus,rhemean-varianceframeworkisunreliablewhen theassumption
of normalityisnot met.
Figure 3:NormalDistributionvs.Positively-Skewed Distribution
Positive-Skew
NormalDistribution
+
F=0
Trang 27AIM34.3:Definethe Value-at-Risk(VaR) measureof risk,describeassumptions
Valueat risk(VaR)isinterpretedastheworstpossible lossundernormalconditionsover
aspecified period Anotherwaytodefine VaRisas an estimateof themaximum loss that
canoccurwithagivenconfidencelevel.Ifananalystsays,“foragiven month,theVaR
is $1 millionat a95%levelofconfidence,”then this translates to mean“undernormalconditions, in 95%of the months(19 outof20months), we expect the fundtoeitherearn
aprofitorlosenomorethan $1 million.” Analystsmay alsouseotherstandardconfidencelevels(e.g.,90%and99%).Recall that delta-normalVaRcanbecomputedusing the
followingexpression: [p- (z)(cr)].
A majorlimitationoftheVaRmeasureforrisk isthattwoarbitraryparametersareusedin
rhe calculation——theconfidence level andtheholding period.Theconfidence level indicatesthelikelihoodorprobability thatwewill obtainavaluegreaterthanorequaltoVaR Theholding periodcan be any pre-determinedtimeperiod measured in days,weeks, months, or
years
Figure 4illustratesVaRparametersforaconfidencelevelof95% and 99%.Asyou can see,the levelof riskisdependentonthedegree of confidencechosen.VaR increaseswhentheconfidence levelincreases.Inaddition,VaRwill increaseat anincreasingrare as theconfidence levelincreases
Figure 4:VaRMeasurementsforaNormal Distribution
95% VaR
99% VaR
Profit/Loss
-2.33 -1.65Thesecondarbitraryparameter istheholdingperiod VaR willincreasewithincreasesintheholding period Therate atwhichVaR increases isdeterminedinpartby themeanofthedistribution.Ifthereturndistribution hasa mean,p,equalto 0,then VaRriseswiththesquarerootof theholdingperiod(i.e.,the squarerootoftime).If thereturndistribution
Trang 28CrossReferencetoGARP Assigned Reading- Dowd, Chapter 2
VaRestimates are alsosubjecttobothmodelriskandimplementation risk Model riskis
theriskoferrorsresulting fromincorrectassumptionsusedinthe model Implementation
riskisthe riskoferrorsresultingfromtheimplementationofthemodel
Anothermajorlimitationof theVaR measureisthatitdoesnottelltheinvestortheamount
ormagnitudeof theactualloss.VaRonlyprovidesthemaximum value wc canlosefora
givenconfidence level Twodifferentreturndistributionsmayhave thesameVaR,butvery
different risk exposures.Apracticalexampleof how thiscanbea seriousproblemiswhen
aportfolio managerissellingout-of-the-moneyoptions.Foramajoriryof therime,rhe
options willhaveapositivereturn and,therefore,theexpectedreturnispositive.However,
in theunfavorableeventthat theoptions expirein-the-money, theresultinglosscanbevery
large.Thus,different strategiesfocusingonloweringVaRcanbeverymisleadingsincethe
magnitudeof the lossisnotcalculated
Tosummarize,VaRmeasurementsworkwellwithellipticalreturn distributions,suchas
the normal distribution VaRisalso abletocalculate the riskfornon-normaldistributions;
however,VaRestimates may beunreliablein thiscase.Limitations inimplementingthe
VaRmodelfordeterminingrisk resultfromtheunderlyingreturn distribution,arbitrary
confidencelevel,arbitraryholdingperiod,andtheinabilitytocalculate themagnitudeof
losses ThemeasureofVaR also violates the coherent riskmeasurepropertyof subadditivity
whenthereturndistributionisnotelliptical.Thispropertyisfurther explainedin thenext
AIM
COHERENT RISK MEASURES
AIM34.4:Define the properties ofacoherentriskmeasureandexplainthe
meaning of eachproperty
Inordertoproperlymeasure risk, one mustfirst clearly define whatismeantbyameasure
of risk Ifweallowi?tobea setof randomeventsandp(R)tobetherisk measurefor the
randomevents,then coherentrisk measuresshould exhibitthefollowingproperties:
1. Monotonicity:aportfoliowithgreaterfuturereturnswilllikely havelessrisk:
4 Translationinvariance:the risk ofaportfolioisdependentontheassetswithinthe
portfolio:for allconstants c,p(c+ R)=p(R)—c
Thefirst, third,andfourthproperties are morestraightforwardproperties of well-behaved
distributions.Monotonicityinfers that ifarandom futurevalue isalwaysgreaterthana
randomfuturevalueRvthenthe riskofthereturndistributionforRlisless than therisk
ofthereturndistributionfor i?2.Positivehomogeneitysuggeststhattheriskofaposition
isproportionalto itssize Positivehomogeneityshould holdaslongasthe securityisin a
Trang 29liquid market Translationinvarianceimpliesthat theadditionofasureamountreducestheriskatthesamerateasthe cash neededtomakethe position acceptable.
Subadditiviryisthemostimportantpropertyforacoherentriskmeasure Theproperty
ofsubadditivitystatesthataportfoliomadeup ofsub-portfolioswillhaveequalorlessrisk than thesumof the risks of each individual subportfolio.Thisassumesthat whenindividual risksarecombined, theremaybesomediversification benefitsor,in theworst
case, nodiversification benefits andnogreaterrisk Thisimpliesgroupingoradding risksdoesnotincreasethe overallaggregateriskamount.
EXPECTED SHORTFALL
AIM34.5: Explainwhy VaRisnotacoherentriskmeasure
AIM34.6:Explain and calculate expected shortfall(ES),and compare andcontrast
VaR and ES
Valueatriskistheminimumpercent loss,equalto apre-specifiedworst casequantile
return (typically the5th percentilereturn).Expectedshortfall(ES)isthe expected lossgiventhatthe portfolio returnalreadyliesbelow thepre-specifiedworstcasequantile
return (Le„belowthe5th percentilereturn).In otherwords,expectedshortfallis the
knownasconditionalVaRorexpected tail loss(ETL).
For example,assumean investor is interested inknowingthe5%VaR(the5%VaR isequivalenttothe5thpercentilereturn)forafund.Further,assumethe5th percentilereturnfor the fund equals-20% Therefore,5% of thetime,thefundearnsa returnlessthan-20% Thevalueatrisk is—20%.However, VaRdoesnotprovide goodinformation
regarding theexpectedsizeoftheloss ifthe fundperformsin thelower5% ofthepossibleoutcomes.That questionisanswered bytheexpected shortfallamount,whichisthe
expectedvalueofallreturnsfallingbelowthe5th percentilereturn (i.e.,below-20%).
Therefore,expected shortfallwill equalalargerlossthantheVaR.Inaddition,unlikeVaR,
EShas theabilitytosatisfy thepropertyof subadditivity
TheES method providesan estimateof howlargeofalossisexpected ifanunfavorable
eventoccurs.VaRdidnotprovideany estimateof the magnitudeoflosses,only theprobability that they mightoccur.Thepropertyof subadditivity undertheESframeworkisalsobeneficialineliminatinganotherproblemforVaR.Whenadjusting both theholding
periodandconfidence levelatthesamerime, anESsurfacecurveshowingtheinteractions
ofbothadjustmentsisconvex.Thisimpliesthatthe ESmethodis moreappropriate thantheVaRmethodinsolving portfoliooptimization problems
Trang 30Cross Reference to GARPAssigned Reading—Dowd, Chapter 2 However,ESisamoreappropriateriskmeasurethan VaRforthefollowingreasons:
• ESsatisfiesallof thepropertiesof coherentriskmeasurementsincludingsubadditivity
VaR onlysatisfiestheseproperties for normal distributions
• TheportfoliorisksurfaceforESisconvexbecause thepropertyof subadditivityis met.
Thus,ESismoreappropriate for solvingportfoliooptimizationproblemsthantheVaR
method
• ES givesan estimateof the magnitude ofaloss for unfavorableevents.VaRprovidesno
estimateof how largealossmay be
• EShas lessrestrictiveassumptionsregardingrisk/returndecision rules
AIM 34.7:Describespectralriskmeasures,andexplainhowVaRand ESarespecial
casesofspectralriskmeasures
A moregeneralriskmeasurethaneither VaRorESisknownasthe riskspectrumorrisk
aversionfunction Theriskspectrummeasurestheweightedaverages ofthereturnquantiles
_from thelossdistributions.ES isaspecialcaseof this riskspectrum measure.When
modelingthe EScase,theweightingfunctionisset to[1 /(1—confidencelevel)]for rail
losses Allotherquantileswill have aweightofzero
VaRisalsoaspecialcaseofspectralriskmeasuremodels.Theweightingfunction withVaR
assignsaprobabilityofoneto the eventthatthe/-valueequalsthelevelofsignificance(i.e.,
p=a),andaprobabilityofzerotoall othereventswhere p*a Thus,theESmeasure
placesequalweightsontaillosses whileVaR placesnoweighton taillosses
In orderforarisk measuretobecoherent,itmustgivehigherlossesatleast thesame
weightaslowerlosses.‘Inthe EScase,all lossesaregiventhesameweight.Thissuggeststhat
investorsarerisk-neutral withrespect tolosses Thisiscontradictorytothecommonnotion
thatinvestorsarerisk-averse IntheVaRcase,only theJossassociatedwitha/-valueequal
• toaisgivenanyweight.Greaterlossesare givennoweightatall Thisimplies thatinvestors
arerisk-seekers.Thus, theESandVaRmeasures areinadequatein thattheweighting
function is nor consistentwithrisk aversion
SCENARIO ANALYSIS
AIM34.8:Describehow the resultsofscenarioanalysiscanbeinterpretedas
coherent riskmeasures
Theresultsofscenarioanalysiscanbeinterpretedascoherentriskmeasuresby first
assigningprobabilitiestoasetof lossoutcomes.These lossescanbe thought ofastail
drawingsof the relevant distribution function The expected shortfallforthe distribution
canthenbecomputed byfindingthe arithmetic average of the losses.Therefore,the
outcomesofscenarioanalysismustbe coherent riskmeasurements,because ESisacoherent
Scenarioanalysiscanalso be appliedin situationswhere thereare numerousdistribution
functionsinvolved.It canbeshown thattheES,thehighestESfroma setofcomparable
expectedshortfalls basedondifferent distributionfunctions, andthe highest expected
shortfallfroma setof highest lossesareall coherentriskmeasures.For example,assume
youareconsideringa setofnlossoutcomes outofafamilyof distribution functions The
Trang 31F.Sisobtainedfrom eachdistributionfunction.If thereis a setofmcomparable expectedshortfalls, that eachhaveadifferentcorrespondingloss distributionfunction,then themaximumoftheseexpected shortfallsis acoherentriskmeasure Thus,incaseswheren=1,
the ESisthe sameasthe probablemaximumloss becausethereisonlyonetail lossineachscenario.Ifmequalsone,then thehighest expected loss fromasinglescenarioanalysisisa
coherenrmeasure.Incaseswherem is greaterthanone,thehighestexpectedofm worst case
outcomesis acoherent riskmeasure
Trang 32Cross Reference toGARPAssigned Reading—Dowd, Chapter 2
AIM34.1
Thetraditionalmean-variancemodelestimatestheamountof financialriskforportfolios
intermsof theportfolios expectedreturn(mean)and risk(standarddeviationor variance)
Anecessaryassumptionforthis modelisthatreturndistributions fortheportfoliosare
ellipticaldistributions
Theefficient frontieristhesetofportfoliosthat dominate allotherportfoliosinthe
investmentuniverseofriskyassetswithrespect torisk andreturn.Whenarisk-freesecurity
is introduced,theoptimalsetof portfoliosconsistsofalinefromtherisk-freesecuritythat
istangent totheefficient frontieratthe marketportfolio
AIM34.2
Themean-varianceframeworkisunreliable when theunderlyingreturndistributionis not
normalorelliptical.Thestandard deviationisnot an accuratemeasureof risk and does
returndensityfunctionisnotsymmetrical
AIM34.3
Valueatrisk(VaR) isariskmeasurementthatdetermines theprobabilityofanoccurrence
inthe left-hand tailofa returndistributionat agiven confidencelevel.VaRisdefinedas:
[p-(z)(o)].The underlyingreturn distribution,arbitrarychoiceofconfidence levels and
holdingperiods, and the inabilitytocalculatethemagnitudeof losses resultinlimitations'
inimplementingtheVaRmodel when determiningrisk
Subadditivity, themostimportantpropertyforacoherentriskmeasure, statesthata
portfolio made up ofsub-portfolioswill have equalorless risk thanthesumof the risks of
each individualsub-portfolio.VaR violatesthepropertyofsubadditivity
Trang 33Expected shortfallis a moreaccuraterisk measurethanVaRforthefollowingreasons:
• ESsatisfies allthe propertiesof coherent riskmeasurementsincluding subadditivity
• Theportfoliorisk surface for ESis convex sincethepropertyof subadditivityis met.
Thus,ESis moreappropriate forsolving portfoliooptimizationproblemstitantheVaRmethod
• ES givesan estimateofthemagnitudeofalossfor unfavorableevents.VaRprovidesno
estimateofhowlargealoss maybe
• EShas lessrestrictiveassumptionsregardingrisk/return decision rules
AIM34.7
ESis aspecialcaseof the riskspectrum measurewhere theweightingfunctionisset to
1 /(1—confidencelevel)for tail losses that all have an equalweight,andallotherquantiles
haveaweightofzero.The VaRisaspecialcasewhereonlyasingle quantileis measured,
and theweightingfunctionisset to onewhen />-valueequalsthelevelofsignificance,andallotherquantiles haveaweightofzero
AIM34.8
Theoutcomesofscenarioanalysisarecoherentriskmeasurements,becauseexpected
shortfallisacoherent riskmeasurement.TheES for the distributioncan be computedby
findingdiearithmetic average of the lossesforvarious scenariolossoutcomes.
Trang 34CrossReference roGARPAssigned Reading-Dowd,Chapter2
CONCEPT CHECKERS
The mean-varianceframeworkisinappropriate for measuring risk when the
underlyingreturndistribution:
A isnormal
B iselliptical
C hasakurrosis equal tothree
D ispositively skewed
Assumeaninvestor is veryrisk-averseandiscreatingaportfoliobasedonthe
mean-variance modelandtherisk-freeasset.Theinvestorwillmostlikely choosean
investmentonthe:
A left-hand side of the efficientfrontier
B right-handsideof the efficient frontier
C linesegmentconnecting the risk-freerate tothemarketportfolio
D linesegmentextendingtotherightof themarketportfolio
p(X+ Y)<p(X)+p(Y) isthemathematicalequationforwhichpropertyofa
coherentriskmeasure?
Whichofthefollowingisnot areasonthatexpected shortfall(ES)is amore
appropriateriskmeasurethan valueatrisk(VaR)?
A For normaldistributions,only ES satisfiesalltheproperties of coherent risk
measurements.
B Fornon-ellipticaldistributions,the portfolio risksurfaceformed byholding
period and confidence levelis more convexforES
C ESgivesanestimateofthemagnitudeofaloss
D EShaslessrestrictiveassumptionsregardingrisk/returndecision rulesthan VaR
Iftheweighting functioninthegeneralriskspectrummeasureisset to
1/(1-confidencelevel)foralltaillosses, thentheriskspectrumis aspecialcaseof
Self-TestQuestions:41(page284)
PastFRM Exam Questions:#8-9(page292)
Trang 35CONCEPT CHECKER ANSWERS
i. D The mean-varianceframeworkisonlyappropriatewhentheunderlyingdistribution is
elliptical.The normal distribution is aspecialcase ofellipticaldistributionswhereskewness is
equalto zero and kurtosis isequalto three.If thereis any skewness,the distribution function
will notbe symmetrical, and standarddeviation will not be an appropriateriskmeasure.
2. C Under themean-variance framework,whenarisk-freesecurity isincludedin theanalysis,
theoptimalsetof portfolioslies on astraight linethat runs fromtherisk-free security tothemarketportfolio Allinvestorswill holdsomeportion oftherisk-freesecurityand themarket
portfolio.Morerisk-averseinvestorswill holdsomecombinationofthe risk-free security and the marketportfoliotoachieve portfolioson the line segment between therisk-freesecurity andthe market portfolio
3 B Thepropertyof subadditivitystates that aportfoliomadeupof sub-portfolioswill have
equalorlessrisk than the sumofthe risks of each individualsub-portfolio
4 A VaR andESboth satisfyallthe properties of coherent riskmeasuresfornormaldistributions
However,only ES satisfies allthe properties ofcoherentrisk measures when the assumption
ofnormalityis not met.
5 C Expected shortfallis aspecialcase of theriskspectrum measure that isfoundby setting the
weightingfunction to 1 / (1—confidencelevel)fortail losses that all have anequal weight
Trang 36The following is a review of the Valuation and Risk Models principles designed to address the AIM statements
set forth byGARP®.This topic is also covered in:
MODELS
Topic 35
EXAM FOCUS
Obtaininganaccurateestimateofan asset’svalue that is atrisk of losshinges greatlyonthe
measurementoftheassetsvolatility(orpossibledeviation in valueover acertain timeperiod)
Asset valuecanbeevaluatingusinganormaldistribution; however,deviationsfrom normality
willcreatechallengesfor therisk manager inmeasuring both volatility and valueatrisk(VaR).
In this topic,wewill discussissueswith volatilityestimation anddifferent weighting methods
_thatcanbe usedtodetermineVaR.The advantages, disadvantages, andunderlyingassumptions
of thevariousmethodologieswill also be discussed Fortheexam,understand why deviations
from normality occurandhaveageneral understandingoftheapproachestomeasuringVaR
(parametricand nonparanietric)
AIM35.1:Explain howasset returndistributionstend todeviatefrom the normal
distribution
AIM35.2: Explainpotentialreasonsfor theexistenceoffat tailsin areturn
distributionand describe theimplicationsfat tails haveon analysisofreturn
distributions.
AIM35.3: Distinguishbetweenconditional and unconditional distributions
Threecommondeviations fromnormalitythatareproblematicinmodelingriskresultfrom
asset returnsthatare fat-tailed, skewed,orunstable,
Fat-tailedrefersto adistributionwithahigher probability ofobservationsoccurring in
the tails relativetothe normal distribution Asillustrated inFigure1,thereisalarger
probability ofanobservation occurringfurtherawayfrom,themeanof the distribution
The firsttwo moments (meanandvariance)of thedistributionsaresimilarforthefat-tailed
andnormaldistribution.However, inaddition tothegreatermass inthetails,thereisalso a
greaterprobabilitymassaroundthe meanfor the fat-tailed distribution.Furthermore,there
isless probabilitymassinthe intermediate range(around+/-onestandarddeviation)for
thefat-taileddistribution compared tothe normal distribution
Trang 37Figure1:Illustrationof Fat-Tailedand NormalDistributions
Adistributionisskewed when the distributionisnotsymmetrical.Ariskmanager is moreconcernedwhen thereisahigherprobabilityofalargenegativereturnthanalargeposirive
return.Thisisreferredtoasleft-skewed and isillustrated in Figure2.
Figure2:Left-SkewedandNormalDistributions
In modelingrisk, anumberofassumptionsarenecessary.Iftheparametersofthe modelare
unstable, theyare not constantbutvary over time.For example, ifinterestrates, inflation,
andmarketpremiums arechangingover time,thiswill affectthevolatility ofthereturnsgoing forward
DEVIATIONS FROMTHENORMAL DISTRIBUTION
Thephenomenon of “fat tails”ismostlikely the result of the volatility and/orthe meanofthe distributionchangingovertime.If themeanand standard deviationare thesameforasset returnsforany givenday, thedistributionofreturnsisreferredto as an unconditionaldistributionofasset returns.However,different marketor economicconditionsmay causethemeanand varianceofthereturndistributiontochangeovertime.Insuchcases,the
Trang 38Cross Reference to GARPAssigned Reading Allen et al.,Chapter2
reflectedinstockprices, it isnotlikelythat thefirstmoments orconditionalmeansof the
distributionvaryenoughtomakeadifferenceover time.
The second possible explanation for “fat tails”isthatthesecondmomentorvolatilityis
time-varying.This explanationismuch morelikely given observedchangesin interestrate
volatility (e.g.,prior to amuch-anticipated Federal Reserveannouncement).Increased
marketuncertaintyfollowing significant politicalor economiceventsresultsinincreased
volatilityofreturndistributions
MARKET REGIMESANDCONDITIONAL DISTRIBUTIONS
AIM35.4:Describetheimplications of regimeswitchingonquantifyingvolatility
Aregime-switching volatilitymodel assumesdifferent marketregimes existwithhighor
low volatility.Theconditional distributionsofreturnsarealways normalwitha constant
mean but eitherhaveahighorlow volatility Figure 3 illustratesahypo
thetieaTregime-switchingmodelforinterestratevolariliry Notethat thetrueinterestrarevolatilitydepicted
by the solidlineiseither13 basis pointsper day(bp/day)or6bp/day.The actual observed
returnsdeviate aroundthehigh volatility 13bp/day levelandthe low volatility 6bp/day
In thisexample,the unconditionaldistributionis notnormally distributed.However,
assuming time-varying volatility, theinterestratedistributionsareconditionally normally
distributed
Theprobability of large deviations from normalityoccurring are muchless likelyunder the
regime-switchingmodel.Forexample,the interestratevolatilityinFigure3rangesfrom
5.7bp/dayto13.6bp/daywithanoverallmeanof8.52bp/day.However,rhe 13.6bp/day
hasadifferenceof only 0.6bp/day from the conditionalhigh volatility level comparedto a
5.08bp/day difference from the unconditional distribution.Thiswould resultinafrit-tailed
unconditional distribution.Theregime-switchingmodelcapturesthe conditional normality'
andmayresolvethefat-tail problemandotherdeviations from normality
Figure3: ActualConditionalReturnVolatility Under MarketRegimes
Trang 39Cross Reference to GARPAssigned Reading—Alien et al Chapter 2
Ifwe assumethatvolatilityvarieswith timeandthatasset returns areconditionallynormallydistributed,thenwe maybeabletotoleratethe fat-tail issue.Inthenextsection
wedemonstrate howtoestimateconditionalmeansandvariances However,despite efforts
to moreaccuratelymodelfinancialdata, extreme eventsdo still occur Themodel(or
distribution)usedmaynot capturetheseextreme movements.Forexample,valueatrisk
(VaR)models aretypicallyutilizedtomodel the risk levelapparentinassetprices.VaRassumesasset returnsfollowanormal distribution,butaswehave just discussed,asset
returndistributions tendtoexhibitfattails.Asa result,VaRmayunderestimatetheactuallossamount.
However, some tools existthatservetocomplement VaR by examining thedata in the tail
ofthedistribution For example,stresstestingand scenario analysiscan examine extreme eventsby testing how hypothetical and/orpastfinancial shockswill impactVaR.Also,
extremevalue theory(EVT)canbeapplied toexamine justthe tail ofthedistributionandsomeclassesofEVTapplya separatedistributiontothe tail Despitenotbeingable
toaccuratelycapture eventsin the tail, VaR isstill usefulfor approximatingtherisklevelinherentinfinancial-assets
VALUEAT RISKAIM35.5:Explain the variousapproachesfor estimating VaR
AIM35.6: Compare,contrastandcalculate parametric andnon-parametric
approaches for estimatingconditionalvolatility,including:
• Historical standard deviation
-A valueatrisk (VaR)methodfor estimating riskistypicallyeitherahistorical-based•
approachoranimplied-volatility-based approach Under the historical-based approach,theshapeof theconditionaldistribution isestimated basedonhistoricaltime seriesdata.Historical-basedapproaches typically fallintothreesub-categories:parametric,nonparametric,and hybrid
1. Theparametricapproach requires specificassumptionsregardingrheasset returnsdistribution.A parametricmodeltypicallyassumes asset returns arenormallyor
lognormallydistributedwith time-varyingvolatility.Themost commonexample ofthe parametricmethodinestimating future volatilityisbasedoncalculatinghistoricalvarianceorstandarddeviationusing“meansquared deviation.” For example,the
followingequation isusedtoestimatefuturevariance basedon awindowofthe Kmost
Trang 40Topic 35
Cross Reference to GARPAssignedReading-Allen et al.,Chapter2
Ifweassumeasset returnsfollowarandomwalk,the meanreturniszero.Alternatively,
ananalyst mayassumeaconditionalmeandifferentfromzeroandavolatilityfora
specificperiod oftime
Professor’sNote:The delta-normal methodisanexampleofaparametric
approach
_ _ r •
'
>gK=100 (an estimationwindowusing themost recent 100*sscc returns),
ailyconditionalmean asset return, is estimatedTodje-15bp/dayg v
2 Thenonparametricapproachisless restrictive inthat therearenounderlying
assumptions of theasset returnsdistribution Themostcommonnonparametric
approach models volatility using thehistoricalsimulation method
3 Asthename suggests,the hybrid approach combines techniques of both parametric
andnonparametricmethodstoestimatevolatility using historical data
Theimplied-volatility-based approachuses derivativepricingmodels suchasthe
Black-Scholes-Mertonoption pricingmodel toestimateanimplied volatilitybasedon current
marketdataratherthan historical data
PARAMETRIC APPROACHESFORVAR
TheRiskMetrics®[i.e.,exponentiallyweighted moving average(EWMA) model]and
GARCH approachesareboth exponential smoothing weighting methods.RiskMetrics®is
actuallyaspecialcaseoftheGARCH approach.Bothexponentialsmoothingmethodsare
similartothe historicalstandarddeviationapproachbecauseall three methods:
• Areparametric
• Attemptto estimateconditional volatility
• Userecenthistorical data
• Applya setof weightsto pastsquaredreturns.
Professor’sNote:TheRiskMetrics®approachis just anEWMAmodel that
uses apre-specified decayfactorfordailydata(6.94) andmonthlydata
(0.97)
The onlymajordifference between thehistoricalstandard deviationapproachand the
twoexponential smoothingapproachesiswithrespect totheweights placedonhistorical
returnsthatareusedtoestimatefuturevolatility.The historical standarddeviationapproach
assumes allKreturnsin thewindowareequallyweighted.Conversely,theexponential