1. Trang chủ
  2. » Giáo Dục - Đào Tạo

De thi THPTQG minh hoa

6 273 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 2,44 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ.. Gọi BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng SBC tạo  với

Trang 1

SỞ GD & ĐT HẢI PHÒNG

ĐỀ CHÍNH THỨC

(Đề thi có 5 trang)

ĐỀ THI THỬ THPT LẦN 1 NĂM HỌC 2016 – 2017

Môn: TOÁN

Ngày thi: ………

Thời gian làm bài: 90 phút, không kể thời gian phát đề

(50 trắc nghiệm)

(Đề có sự thay đổi hình thức theo chuẩn BTN) Mã đề thi 132

Họ, tên thí sinh:

Số báo danh:

Câu 1: Tìm tất cả giá trị của m để hàm số 3   2  

yxmxmx nghịch biến trên khoảng có độ dài lớn hơn 3

A m  6 B m  9 C m  hoặc 0 m  6 D m  0

Câu 2: Tı̀m tất cả giá trị của m để hà m số 1 3 2  2 

1 1 3

yxmxmmx đa ̣t cư ̣c đa ̣i ta ̣i x  1

A m   2 B m   1 C m  2 D m  1

Câu 3: Cho a là số thực dương, a  Khẳng định nào sau đây SAI? 1

A

3

log

3

a

3

log

9 a 2a C loga 1 1

a   D  log 0,5 1

0,125 1

Câu 4: Giá trị của biểu thức

 

0

2 2 5 5

10 :10 0,1

P

là:

A 9 B  9 C 10 D 10

Câu 5: Cho hình hộp đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và  0

60

BAD  , AB' hợp

với đáy ABCD một góc  0

30 Thể tích của khối hộp là :

A

3

2

a

3 3 2

a

C

3

6

a

3 2 6

a

Câu 6: Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích

3

1dm Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào?

A Hình trụ và chiều cao bằng đường kính đáy

B Hình trụ và chiều cao bằng bán kính đáy

C Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy

D Hình hộp chữ nhật và cạnh bên bằng cạnh đáy

Câu 7: Một bác nông dân vừa bán một con trâu được số tiền là 20.000.000 (đồng) Do chưa cần dùng

đến số tiền nên bác nông dân mang toàn bộ số tiền đó đi gửi tiết kiệm ngân hàng loại kỳ hạn 6 tháng với lãi suất kép là 8.5% một năm Hỏi sau 5 năm 8 tháng bác nông dân nhận được bao nhiêu tiền cả vốn lẫn lãi (làm tròn đến hàng đơn vị)? Biết rằng bác nông dân đó không rút vốn cũng như lãi trong tất cả các định kì trước và nếu rút trước thời hạn thì ngân hàng trả lãi suất theo loại không kì hạn 0.01% một ngày (1 tháng tính 30 ngày)

A 30803311 B 31803311 C 32833110 D 33083311

Trang 2

Câu 8: Tìm tất cả giá trị của m để hàm số m 1x 2

y

x m

 đồng biến trên từng khoảng xác định

A  2 m 1 B 1

2

m m

 

C  2 m 1 D 1

2

m m

 

Câu 9: Đồ thị hình bên là của hàm số nào?

Chọn một khẳng định ĐÚNG

A 3

1

x y

x

2 1

x y x

C 1

1

x y x

2 1 1

x y x

Câu 10: Cho hàm số 3 1

1 2

x y

x

Khẳng định nào sau đây ĐÚNG?

A Đồ thị hàm số có tiệm cận đứng là x  1

B Đồ thị hàm số có tiệm cận ngang là 3

2

y  

C Đồ thị hàm số có tiệm cận ngang là y 3

D Đồ thị hàm số không có tiệm cận ngang

Câu 11: Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền

bằng a 2 Gọi BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng SBC tạo  với mặt phẳng đáy một góc 600 Tính diện tích tam giác SBC

A

2 3 3

a

2

3

a

2 2 2

a

2 2 3

a

S 

Câu 12: Số điểm cư ̣c đa ̣i của đồ thị hà m số 4

100

yx  là:

Câu 13: Phương trình log 33 x 2 có nghiệm là: 3

A 29

25

11 3

Câu 14: Tâ ̣p nghiê ̣m của bất phương trı̀nh 3log2x4 là :

A 8;16  B 0;16  C 8;   D

Câu 15: Phương trình 1   2

5x 5 0, 2 x 26

  có tổng các nghiệm là:

Câu 16: Tập xác định của hàm số yx23 là:

Câu 17: Cho hình nón đỉnh S, đáy là hình tròn tâm O, thiết diện qua trục là tam giác đều cạnh a, thể tích

của khối nón là:

A 1 3 3

8 a B 1 3 3

6 a C 1 3 3

24 a D 1 3 3

12 a

Câu 18: Một chất điểm chuyển động theo phương trình 3 2

S   t t  t trong đó t tính bằng (s) và

S tính bằng (m) Thời gian vận tốc của chất điểm đạt giá trị lớn nhất là:

A t2s B t3s C t6s D t5s

Trang 3

Câu 19: Tìm tất cả giá trị của m để phương trình x  1 xm có nghiệm

A 0;1  B ;0 C 1;   D 0;1

Câu 20: Từ một miếng tôn hình bán nguyệt có bán kính R  , người ta 3

muốn cắt ra một hình chữ nhật (xem hình) có diện tích lớn nhất

Diện tích lớn nhất có thể có của miếng tôn hình chữ nhật là:

A 6 3 B 6 2

Câu 21: Một khối lập phương có cạnh 1m Người ta sơn đỏ tất cả các mặt của khối lập phương rồi cắt

khối lập phương bằng các mặt phẳng song song với các mặt của khối lập phương để được 1000 khối lập phương nhỏ có cạnh 10cm Hỏi các khối lập phương thu được sau khi cắt có bao nhiêu khối lập phương có đúng 2 mặt được sơn đỏ?

Câu 22: Mô ̣t ho ̣c sinh giả i phương trı̀nh 3.4x3x10 2 x   (*) như sau: 3 x 0

Bướ c 1: Đă ̣t t 2x 0 Phương trı̀nh (*) đươ ̣c viết la ̣i là : 2    

3.t  3x10 t  3 x 0 1

3x 10 12 3 x 9x 48x 64 3x 8

Suy ra phương trı̀nh (1) có hai nghiê ̣m 1

3

t  hoặc t  3 x

Bướ c 2:

+ Vớ i 1

3

t  ta có 2 1 log21

x

x

   + Vớ i t   ta có 23 x x  3 xx1 (Do VT đồng biến, VP nghịch biến nên PT có tối đa

1 nghiệm)

Bướ c 3: Vâ ̣y (*) có hai nghiê ̣m là log21

3

x  và x  1 Bà i giả i trên đú ng hay sai? Nếu sai thı̀ sai từ bướ c nà o?

A Bướ c 2 B Bướ c 3 C Đú ng D Bướ c 1

Câu 23: Trong các mệnh đề sau, mệnh đề nào ĐÚNG?

A Hai khối chóp có hai đáy là hai tam giác đều bằng nhau thì thể tích bằng nhau

B Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau

C Hai khối đa diện có thể tích bằng nhau thì bằng nhau

D Hai khối đa diện bằng nhau có thể tích bằng nhau

Câu 24: Số nghiê ̣m nguyên của bất phương trı̀nh

là :

Câu 25: Cho hàm số 1 3 2  

3

y  xmxmx Tìm tất cả giá trị của m để hàm số nghịch biến

trên 

A 1

2

m m

 

  

B 1

2

m m

 

  

Trang 4

Câu 26: Cho hàm số 2 1

1

x y x

 có đồ thị  C Tìm tất cả giá trị của m để đường thẳng

 d :y x m cắt 1  C tại 2 điểm phân biệt A, B sao cho AB 2 3

A m  4 3 B m  4 10 C m  2 3 D m  2 10

Câu 27: Cho hàm số y3sinx4sin3x Giá trị lớn nhất của hàm số trên khoảng ;

2 2

 

  bằng:

Câu 28: Cho khối nón đỉnh O, chiều cao là h Một khối nón khác có đỉnh

là tâm I của đáy và đáy là một thiết diện song song với đáy của

hình nón đã cho Để thể tích của khối nón đỉnh I lớn nhất thì

chiều cao của khối nón này bằng bao nhiêu?

A

2

h

B

3

h

C 2

3

h

D 3

3

h

Câu 29: Tìm tất cả giá trị của m để phương trình 2  

log xm2 log x3m  có 2 nghiệm 1 0 x x 1, 2 sao cho x x 1 2 27

3

3

m 

Câu 30: Cho hàm số 2

2

x y x

 có đồ thị  C Tìm tọa độ điểm M có hoành độ dương thuộc  C sao cho tổng khoảng cách từ M đến hai tiệm cận nhỏ nhất

A M0; 1  B M2; 2 C M1; 3  D M4;3

Câu 31: Đồ thị hình bên là của hàm số nào?

Chọn một khẳng định ĐÚNG

A yx33x21

B

3 2 1 3

x

y  x

C y2x36x21

D y x33x2 1

Câu 32: Hà m số yx44x3 5

A Nhâ ̣n điểm x  là m điểm cư ̣c đa ̣i 3 B Nhâ ̣n điểm x  là m điểm cư ̣c đa ̣i 0

C Nhâ ̣n điểm x  là m điểm cư ̣c tiểu 3 D Nhâ ̣n điểm x  là m điểm cư ̣c tiểu 0

Câu 33: Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh 2a , tam giác SAB là tam giác đều

và nằm trong mặt phẳng vuông góc với mặt đáy Tính thể tích khối chóp S ABC

A

3

2

a

3 3 2

a

Câu 34: Một hình trụ có đường kính đáy bằng chiều cao và nội tiếp trong mặt cầu bán kính R Diện tích

xung quanh của hình trụ bằng:

h

x

O

Trang 5

Câu 35: Cho hàm số y 2x 3x m

x m

 có đồ thị  C Tìm tất cả giá trị của m để  C không có tiệm cận đứng

A m  0 B m  1 C m  2 D m  hoặc 0 m  1

Câu 36: Nghiệm của phương trình

1 1

125 25

x

x

 

 

 

là:

A 2

5

8

D 1

Câu 37: Tập xác định của hàm số 3 2 4 3

2

x

x

 là:

A 3; 2 B 3; 2 C  ; 32;  D  ; 3  2; 

Câu 38: Tâ ̣p nghiê ̣m của bất phương trı̀nh 2 2 1

4

x

  

  là:

A ; 2

3

 

3

 

Câu 39: Cho lăng trụ đứng ABC A B C có cạnh bên ' ' ' AA'2a Tam giác ABC vuông tại A có

BCa Thể tích của khối trụ ngoại tiếp khối lăng trụ này là:

A 2 a  3 B 4 a  3 C 8 a  3 D 6 a  3

Câu 40: Cho hàm số yx48x2 Các khoảng đồng biến của hàm số là: 4

A 2;0 và 2;   B 2;0 và 0; 2 

C  ; 2 và 0; 2  D  ; 2 và 2;  

Câu 41: Đồ thị hình bên là của hàm số y x33x2 Tìm 4

tất cả giá trị của m để phương trình 3 2

xxm có

hai nghiệm phân biệt? Chọn một khẳng định ĐÚNG

A m  hoặc 4 m  0

B m  4

C 0m4

D m  0

Câu 42: Cho hình chóp S.ABCD có đáy là hình thang vuông tại AB, ABBCa, AD2a,

SAABCDSAa 2 Gọi E là trung điểm của AD Kẻ EKSD tại K Bán kính mặt cầu đi qua sáu điểm S, A, B, C, E, K bằng:

A 1

3

2 a

Câu 43: Giá trị lớn nhất của hàm số y2x33x212x trên đoạn 2 1; 2 là:

Câu 44: Cho lăng trụ ABC A B C    có đáy là tam giác đều cạnh a Hình chiếu vuông góc của điểm A

lên mặt phẳng ABC trùng với trọng tâm tam giác ABC Biết thể tích của khối lăng trụ là

3

3 4

a

Tính khoảng cách giữa hai đường thẳng AABC

A 2

3

a

B 4

3

a

C 3

4

a

D 3

2

a

Trang 6

Câu 45: Cho khối chóp S ABC có đáy ABC là tam giác cân tại A với BC 2a,  0

120

BAC  , biết

SAABC và mặt SBC hợp với đáy một góc  450 Tính thể tích khối chóp S ABC

A

3

3

a

B a3 2 C

3

2

a

D

3

9

a

Câu 46: Tìm tất cả giá trị của m để đồ thị hàm số yx42mx22m đi qua điểm 1 N  2; 0

A 5

17 6

3 2

Câu 47: Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số   2 1

1

x m

f x

x

 

 trên đoạn  1; 2 bằng 1

Câu 48: Cho hà m số 1 3 2

1 3

yxmx  x m Tı̀m tất cả giá trị của m để đồ thị hà m số có 2 điểm cư ̣c

tri ̣ là A xA;y A,B xB;y B thỏa mãn 2 2

2

xx

A m  0 B m   1 C m   3 D m  2

Câu 49: Tâ ̣p nghiê ̣m của bất phương trı̀nh  2   

log xx log 2x4 là :

A 1; 2  B  ; 4  1; 2 C  ; 4  1;  D 4;1

Câu 50: Đạo hàm của hàm số  2 

8 log 3 4

yxx là:

A

2 3

3 4 ln 8

x

x x

2 3

3 4 ln 2

x

x x

2 3

3 4

x

x x

1

3 4 ln 8

xx ` - HẾT -

ĐÁP ÁN

Ngày đăng: 21/01/2017, 22:13

TỪ KHÓA LIÊN QUAN

w