báo cáo mang tính chất tham khảo để giúp các bạn có thể xem xét và đóng góp ý kiến. Nếu các bạn thấy hay có thể tải về để chỉnh sửa và sử dụng. Bài báo cáo về mạch lưu chất giúp ta nghiên cứu về các dòng chảy và các cách xác định về các loại dòng chảy
Trang 1III PHÚC TRÌNH:
1/ SỐ LIỆU VÀ XỬ LÍ SỐ LIỆU:
Thí nghiệm 1
m(cm
v (cm H2O) Lần 1
Lần 2
Tính trung bình kết quả của 3 lần thí nghiệm ta có bảng số liệu mới :
m(cm
v
(cm H2O)
- Khối lượng riêng của nước: ρ = 995 kg
m3
- Độ nhớt của nước: μ = 0.0008 Ns
m2
- Trọng lượng riêng của nước: γ = ρ.g = 995.9,81 = 9761 N
m3
- Gia tốc trọng trường: g = 9,81 m
s2
Trang 2- 1 mmH2O =9.81 N
m2 => 1 cm H2O = 98.1N
m2
-Ở chế độ mở hoàn toàn:
- Lưu lượng: Q=
W
t =
13 27
40 =0 332 (lít/s)
- Ta có:
ΔPP m
ρg =
ΔPP m.98.1
13.9 x.98.1 995.9,81 =0.13928mH2O =13.97 cm H2O
- Ta có:
ΔPP v
ρg =
ΔPP v.98.1
ρg .100=
10.9x 98.1 995.9,81 =0.10955mH2O =10.955 cm H2O
- Vận tốc qua màng chắn và venturi: V =
4Q
πdd2 =
4.0,332 1000
3,14.0,0172
= 1.463 m/s (với d = 17 mm: đường kính lỗ của venturi và màng chắn)
- Re =
ρVd
μ =
995 x1.463x 0.017
- Hệ số của màng chắn:
o Cm = V √γ(1−β4)
2gΔP Pm =1.463x √9761 x(1−(0.0170.04 )4)
2 x9.81x(13.9 x98.1) = 0.869
- Hệ số của venturi:
o Cv = V √γ(1−β4)
2gΔP Pv = 1.463x √9761 x(1−(0.0170.04 )4)
2 x9.81x(10.9 x98.1) = 0.98
Tính toán tương tự như trên cho các chế độ mở khác ta thu được kết quả như sau: ST
T Chế
độ
mở
W(lít ) t(s) (lit/sQ
)
ΔP P m
g (c
m H2O)
ΔP P v g
(cm H2O)
V(m/
3091 1
0.86 9
0.98 2
2982 4
0.87 9 1.01 5
Trang 33 ½ 12.47 40 0.31
2 13.23 10.05 1.374 29047 0.891 1.025
2244
Đồ thị lưu lượng Q theo ΔP P m
g và ΔP P m
g
0.220 0.240 0.260 0.280 0.300 0.320 0.340
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
mang venturi
Hệ số lưu lượng kế Cm và Cv theo Re
Trang 422000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Cm Cv
Thí nghiệm 2:
STT Chế độ mở ΔpPm (cm H2O) theo ống A ΔpP ống A (cm H2O)
STT Chế độ mở ΔpPm (cm H2O) theo ống B ΔpP ống B (cm H2O)
Trang 5STT Chế độ mở ΔpPm (cm H2O) theo ống C ΔpP ống C (cm H2O)
STT Chế độ mở ΔpPm (cm H2O) theo ống D ΔpP ống D (cm H2O)
Tính thừa số ma sát trong ống dẫn
Ống A:
Ở chế độ mở hoàn toàn:
- Ta có:
ΔPP m
ρg =
ΔPP m.98
ρg .100=
2.1.98.1
995.9 ,81100=2.110 cmH2O
- Ta có:
ΔPP
ρg =
ΔPP.98
ρg .100=
0.3.98.1
995 9,81 100=0.302 cmH2O
Từ kết quả tính toán trong thí nghiệm 1 ta vẽ được đồ thị biểu diễn mối quan hệ giữa Q
và
ΔP Pm
ρg , phương trình biểu diễn mối quan hệ giữa chúng là:
Trang 67.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00
0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
f(x) = 0.03 x + 0.01 R² = 0.99 f(x) = 0.02 x + 0R² = 1
Chart Title
mang Linear (mang) venturi Linear (venturi)
Q = 0.023
ΔP Pm
ρg + 0.002
- Lưu lượng: Q = 0.023 x 2.110 +0.002 = 0.051 (lít/s)
- Vận tốc dòng: V=
4 Q
πdd2 =
4 x0.051
1000
3.14 x0.0292 = 0.077 m/s (với d=29mm: đường kính trong của ống A)
- Thừa số ma sát trong ống A: f =
ΔPP.2.g.d
LV 2
=
0.302x 2x 9.81x 0.029 1.5x 100x 0.0772 = 0.195 ( với L=1.5m: chiều dài của ống A)
- Chuẩn số Reynolds: Re =
ρVd
μ =
995 x0.077 x0.029
Tính tương tự như trên cho các độ mở khác nhau của ống A ta được kết quả thể hiện trong bảng số liệu sau:
Chế độ mở
ΔPP
ρg ( cm
H2O)
ΔP Pm
ρg ( cm
H2O)
Q (lít/
Trang 7¾ 0.503 4.322 0.101 0.154 0.081 5540
Thực hiện phép tính tương tự như tính cho ống A với việc sử dụng số liệu đo được cho
từng ống B, C, D trong thí nghiệm 2 và đường kính trong ống B,C, D lần lượt là: 22mm, 17mm, 13.5mm, chiều dài ống B, C, D là 1.5m thì ta tính được kết quả như sau:
Ống B:
Chế
độ
mở
ΔPP
ρg ( cm H2O)
ΔP Pm
Ống C:
Chế
độ
mở
ΔPP
ρg ( cm H2O)
ΔP Pm
ρg ( cm
H2O)
Trang 8½ 8.342 3.819 0.090 0.396 0.118 8373
Ống D:
Chế độ
ρg ( cm
H2O)
ΔP Pm
ρg ( cm
H2O)
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
0.2
0.4
0.6
0.8
1
1.2
1.4
ống A ống B ống C ống D
Trang 9Đồ thị biểu thị mối quan hệ giữa f và Re
Thí nghiệm 3:
3/4
Tính chiều dài tương đương của van:
Ở chế độ van 5 mở hoàn toàn và van 6 mở hoàn toàn :
- Ta có: ΔPP m=
ΔPP m.98.1
5,6.98.1
995.9,81 100=5.628 cmH2O
- Ta có: ΔPPv= ΔP Pv.98
ρg .100=
0.3.98.1
995.9,81 100=0.302 cmH2O
- Lưu lượng: Q = 0.023x5.628 + 0.002 = 0.131 lít/s
- Vận tốc dòng: V=
4 Q
πdd2 =
4 x0.131
1000
3.14 x0.042 = 0.104 m/s = 10.4 cm/s
-V2
2 g =
0.1042
2x 9.81 = 0.000551
- Chuẩn số Reynolds : Re=
ρVd
μ =
995 x0.104 x0.04
0.0008 = 5174
Trang 10Từ thí nghiệm 2 ta vẽ được đồ thị quan hệ giữa f và Re Phương trình biểu diễn mối quan
hệ giữa chúng là:
2000 3000 4000 5000 6000 7000 8000
0
0.05
0.1
0.15
0.2
0.25
f(x) = − 0 x + 0.27 R² = 0.94
ống A
ống A Linear (ống A)
Re
Đồ thị biểu diễn mối quan hệ của f theo Re của ống A
f = -3x10-5.Re + 0.267
Thừa số ma sát: f = -3x10-5.Re + 0.267 = -3x10-5x2761 + 0.267 = 0.184
- Chiều dài tương đương: le =
ξdd
f =
0.04 x0.04
0.184 = 0.0087 m
(với ξd = 0.04 ứng với trường hợp ống mở hoàn toàn, d= 40mm: đường kính ống )
Thực hiện phép tính tương tự như trên cho các chế độ mở khác nhau của van 6 ta tính
được các kết quả như sau:
Độ
mở
ΔP Pvan ρg
(cmH2O)
ΔP Pm ρg
(cmH2O )
Q
0.00055
0.00055
Trang 11½ 0.322 5.226 0.122 0.097
0.00048
0.00009
Dùng số liệu đo được trong thí nghiêm 3 và trở lực theo độ mở của van khi van 5 mở ¾ ;
½ lần lượt là: ξd =0,26; ξd =2,06 rồi thực hiện tính toán tương tự như trên cho các độ
mở khác nhau của van 5 , kết quả tính toán thu được thể hiện trong bảng sau:
- Trường hợp van 5 mở 3/4:
Độ
mở
ΔP Pvan
ρg
(cmH2O)
ΔP Pm ρg
(cmH2O )
- Trường hợp van 5 mở 1/2 :
Trang 12mở
ΔP Pvan
ρg
(cmH2O)
ΔP Pm ρg
(cmH2O )
0.00046
0.00042
0.00027
0.00001
0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
HT 1/2 3/4
Đồ thị thể hiện sự phụ thuộc của lưu lượng Q theo độ mở van
III BÀN LUẬN:
1 Nhận xét các giản đồ và so sánh kết quả:
a) Thí nghiệm 1 : Hệ số lưu lượng kế Cm và Cv theo chế độ chảy (Re)
So sánh C m và C v :
Trang 13V =C√(ΔPP.2 g 1− β4) Theo lý thuyết, với đường kính lỗ và đường kính lỗ màng (venturi) bằng nhau nên V2 và
β bằng nhau Do đó C tỉ lệ nghịch với ΔPP
Cấu tạo của màng chắn và venturi là khác nhau Màng chắn thay đổi kích thước đột ngột hơn nên tổn thất áp suất lớn hơn venturi ⇒ Cm < Cv
Kết quả thí nghiệm cho thấy kết luận trên là đúng
Sự phụ thuộc của C m và C v theo Re :
Theo phương trình trên, hệ số lưu lượng tỉ lệ thuận với vận tốc dòng chảy và tỉ lệ nghịch với ΔPP (V) Re tăng kéo theo ΔPP tăng do đó C tăng hay giảm phụ thuộc vào mức độ tăng nhiều hay ít của Re và ΔPP
So sánh lưu lượng kế màng và venturi :
Do ΔPP m > ΔPP v nên khi sử dụng lưu lượng kế venturi sẽ cho kết quả lưu lượng chính
xác hơn
b) Thí nghiệm 2 : Hệ số ma sát f theo chế độ chảy (Re) cho ống 1” và ½”
Theo lý thuyết :
Khu vực chảy tầng f=f1(Re)
Khu vực chảy rối thành trơn f=f2(Re)
Khu vực quá độ từ chảy rối thành trơn sang chảy rối thành nhám: f=f3(Re,
/d)
Khu vực chảy với thành nhám hoàn toàn f=f4(/d)
Theo thực nghiệm :
Giản đồ hệ số ma sát theo Re : gồm có 2 vùng:
+ 5000 < Re < 30000 : hệ số ma sát giảm khi Re tăng Theo lý thuyết, do
ε D
không đổi nên đường biễu diễn f theo Re không phụ thuộc chiều dài ống nhưng thực nghiệm cho thấy chiều dài ống cũng ảnh hưởng đến f Điều này có thể giải thích là do độ nhám của ống kh6ng đều không suốt chiều dài ống, do đóng cặn…
Trong vùng này f có thể được tính theo công thức Re =
0.316
Re1/4
nhưng sai số khá lớn so với thục nghiệm bởi vì điều kiện tiến hành thí nghiệm không không hoàn toàn giống nhau, ống trong phòng thí nghiệm có thể bị đóng cặn, rỉ sét, do quá trình xác định tổn thất cột áp không chính xác…
+ Re > 30000 : hệ số ma sát hầu như không đổi khi Re tăng
Trang 14c) Thí nghiệm 3 : Đặc tuyến van, xác định chiều dài tương đương (Le) và phạm vi ứng dụng của van
Giản đồ Q theo độ mở của van ở 1 vài áp suất :
Theo đồ thị ta thấy, ứng với 1 giá trị tổn thất cột áp nhất định, lưu lượng tăng theo độ mở của van
Chiều dài tương đương của van :
Độ mở của van cũng ảnh hưởng đến chiều dài tương đương của van Độ mở càng lớn, khả năng cản trở dòng chảy càng nhỏ, chiều dài tương đương càng bé Chiều dài tương đương nhỏ nhất khi van mở hoàn toàn
Đặc tuyến van :
Thực nghiệm cho thấy đặc tuyến van có dạng lõm ( dưới đường 450 ) như trên giản đồ nên đây là van cầu, được sử dụng khi cần lưu lượng nhỏ và khi muốn điều chỉnh lưu lượng tăng hoặc giảm với lượng nhỏ
Do có hiện tượng giảm áp suất của lưu chất khi chảy qua van nên ngoài chức năng thay đổi lưu lượng dòng chảy, van còn được sử dụng làm van tiết lưu trong các hệ thống khác
2 Sai số mắc phải khi làm thí nghiệm:
Các giá trị tổn thất cột áp xác định bằng mắt và dao động liên tục nên kết quả thu được có sai số
Một vài số liệu xác định được là do kết quả của thí nghiệm trước nên sẽ dẫn đến hiện tượng sai số được lặp lại nhiều lần
Các ống dẫn trong thí nghiệm có độ nhám không đồng nhất , bị đóng cặn…
Sự rò rỉ chất lỏng dọc đường ống, làm tổn thất năng lượng
Sự hoạt động không ổn định của bơm
Sự gỉ sét không đồng đều bên trong ống dẫn đến độ nhám thành ống không đều
Độ mở của các van không đồng nhất giữa các lần thí nghiệm
Trong lúc thí nghiệm ống bị rò rỉ
3 Mục đích sử dụng van
Điều chỉnh lưu lượng chất lỏng dựa vào độ mở của van , nhờ đó mà giảm trở lực ma sát và trở lực cục bộ , giảm tổn thất năng lượng Để giảm trở lực trên ông dẫn ta có thể giảm chiều dài ống, tăng đường kính ống (ΔpPm sẽ giảm ) Giảm hệ số trở lực , và bằng cách chọn ống , van và độ mở của van
Trang 15* Tài liệu tham khảo:
- Tập 3: Quá Trình Thiết Bị Và Truyền Khối - Võ Văn Bang - Vũ Bá Minh
- Giáo trình Thí Nghiệm Quá Trình và Thiết Bị
- Bài tập Truyền khối tập 3 - Trịnh Văn Dũng