USING COMPLEX NUMBER TO PROVE INEQUALITIES
Batigoal_mathscope.org
Email: hoangquan9@gmail.com
I.Theorem
Let a b a b, , ', ' be real numbers
Let complex numbers z = a+bi and z’ = a'+b i' ( 2
1
i = − )
We have z + z' ≥ +z z'
II.Application
Example 1: Let x y, be real numbers Prove that
2 2
x − x+ + x + x+ ≥
x − x+ + x + x+ ≥
(x 1) 1 (x 1) 16 29
⇔ − + + + + ≥
Let complex numbers z= − +x 1 i , z'= − − +x 1 4i and z''= − +2 5i
We have: z+ =z' z''
using inequality z + z' ≥ +z z', we have 2 2
(x−1) + +1 (x+1) +16≥ 29
Example 2: Let a a b b1, 2, ,1 2 be real numbers Prove that:
(a +a ) +(b +b ) ≤ a +b + a +b
Solution
Let complex numbers z= +a1 b i1 and z'= +a2 b i2
We have z+ =z' (a1+a2) (+ b1+b i2)
using inequality z + z' ≥ +z z',we have:
(a +a ) +(b +b ) ≤ a +b + a +b
Example 3: Let a b c, , be real numbers Prove that:
a +ab b+ + a +ac c+ ≥ b + +bc c
Solution
We have
a +ab b+ + a +ac c+ ≥ b + +bc c
⇔ + + + + + ≥ − + +
b b
z= + +a i , ' 3
c c
z = − − +a i
Trang 2We have ' 3 3
+ = − + +
using inequality z + z' ≥ +z z', we have:
+ + + + + ≥ − + +
Example 4: Let x, y, z be positive real numbers such that x + y + z = 3 Prove
3 3
x +xy+y + y +yz+z + x + +xz z ≥
Solution
S= x +xy+y + y +yz+z + x + +xz z
We have
= + + + + + + + +
= + +
3 '
= + +
3 ''
= + +
z+ + =z z x+ + +y z x+ +y z i
using inequality z + z' + z''≥ + +z z' z'' , we have:
+ + + + + + + + ≥ + + + + +
Thus
Example5: Let a, b, c be positive real numbers such that ab + bc +ca = abc
Prove that:
3
Solution
Let x 1,y 1,z 1
= = = , we have: x, y , z > 0 and x + y + z =1
Trang 3LHS =
x + y + y + z + z + x
Let complex numbers z= +x 2yi , 'z = +y 2zi, ''z = +z 2xi
We have z+ +z' z''= + + +(x y z) 2(x+ +y z i)
using inequality z + z'+ z'' ≥ + +z z' z'' , we have:
x + y + y + z + z + x ≥ x+ +y z + x+ +y z
Thus
3
Example6: Let a, b, c be positive real numbers such that x + y + z ≤1 Prove
82
Solution
Let complex numbers z x 1i
x
= + , z' y 1i
y
= + , z'' z 1i
z
= +
We have z z' z'' (x y z) (1 1 1)i
x y z
+ + = + + + + +
using inenquality z + z'+ z'' ≥ + +z z' z'', we have:
On the other hand, we have
+ + + + + = + + + + + − + +
We will use the AM-GM inequality, we have
thus
(x y z) ( ) 81(x y z) ( ) 80(x y z) 18.9 80.1 82
then LHS x2 12 y2 12 z2 12 82
Batigoal_mathscope.org
Email: hoangquan9@gmail.com