Hai vectd cung phiTdng, cung hirdng Vdi mdi vecto AB khac vecto-khdng, dudng thing AB dugc ggi la gid cua vecta AB.. N B D Hinh 4 Hai vecto AB vk CD ciing phuong, va hon the' cac mi
Trang 1BO GIAO DUC VA OAO TAO
Ik
NANG CAO
I
*if-¥5£;'^ifi'*PSif ni •',Ei''t •'\iSKJK: i*',,-i•Z-^
NHA XUAT BAN GIAO DUC VIET NAM
Trang 3BO GIAO DUC VA DAO TAO
D O A N QUYNH (T6ng Chu bien) - V A N NHU CUONG (Chu bien)
PHAM VU KHUfi - BUI V A N N G H I
HINH HQC
(Tdi bdn ldn thd tu)
NHA XUAT BAN GIAO DUG VIIT NAM
Trang 4N H O N G DIEU H O C SINH CAN CHU Y KHI SU DUNG SACH GIAO KHOA
1 Khi nghe thay co giao giang bai, luon luon c6 SGK tri/dc mat Tuy nhien khong viet, ve them vao SGK, de nSm sau cac ban l<hac c6 the dijng di/dc
2 Ve trinh bay, sach giao khoa c6 hai mang : mang chfnh va mang phu
Mang chinh gom cac djnh nghTa, djnh If, tfnh chat, va thi/dng di/dc dong
khung hoSc c6 dudng vien d mep trai Mang nay duoc in ICii vao trong
3 Khi gSp Cau hoi [ ? ] , can phai suy nghT, tra ldi nhanh va dung
4 Khi g§p Hoat dong ^ , cac em phai dung but va giS'y nhap di thiic hi§n
nhufng yeu cau ma hoat dong doi hoi
Ban quyen thudc Nha xuat ban Giao due Viet Nam Bo Giao due va Dao tao
' ' ' ' i ' ' •' III 11
-01 - 2-010/CXB/733 - 1485/GD Ma s6: NH002T0
Trang 5CHUONG
VECTO
Vecta 1^ mOt kh^i ni^m todn hoc moi dd'i vdi cac em
Hpc chuong ndy, cdc em phdi hieu duoc vecta la gl, the ndo
Id tdng, hi$u cCia hai vecta, tfch cua mot vecta voi mdt sd
NhOng ki^n thuc ndy rSx quan trong, chung id co so de hpc
mdn Hinh hpc cua cd ba I6p 10,11 vd 12
Trang 6CAC D I N H N G H I A
1 Vectd la g i ?
Trong Vat If, nhiJng dai lugfng nhu van t6'c, gia t6c, luc, dugtc goi la dai lugng co hudng Di xac dinh cac dai luang do, ngoai cuomg d6 cua
chiing, ta con phai bi^t hudfng cua chung niia
Vi du : Mot chiee tdu thuy chuyen dong thdng deu vdi tdc do 20 hdi li mdt gid, hien nay dang d vi tri M Hoi sau 3 gid niia nd sedddu ?
Cdc em cd the trd ldi cdu hoi do khdng ? Vi sao ?
?1
Hinh 1 la hai dd m6t viing bi^n tai m6t thofi di^m
nao do Co hai tau thuy chuydn dSng thang d^u ma
van toe dugc bi^u thi bang mui ttn Cac miii tdn
van tdc cho ta tha'y : Tau A chuydn ddng theo
hudfng Ddng, con tau B chuydn ddng theo hudng
Ddng - Bac Tdc dd tau A bang mdt niia tdc dd
tau B (do miii t6n cua tau A dai bang mdt nira, mui
ten ciia tau B)
Nhu vay, cac dai lugng cd hudng thudng dugc bi^u thi bang nhiing miii t6n dugc ggi la nhiing VECTO Vecto la mdt doan thang nhung cd hudng D^ bi^u thi cho hudng cua doan thang ta th6m mdt dau ' V vao mdt trong hai diem mut cua doan thang dd
Gia sit ta cd doan thang AB (ciing cd thi viet
la doan thing BA) Neu them dau *- vao ^
diim B thi ta cd vecto vdi di^m dSu la A vk
diiim cudi la B (h 2a) Ne'u ta them da'u
"J' vao di^m A thi ta dugc vecto vdi'di^m dau la B vk diim cudi la A (h 2b)
Nhu vay, vecto la mdt doan thltig da xac dinh mdt hudfng nao dd trong hai
hudng cd thi cd cua doan thing da cho Hudng cua vecta la hudng di tit
diim ddu de'n di^m cud'i
B Hinh 2
B b)
Trang 7DINH NGHiA
Vecta Id mot doan thdng cd hudng, nghia la trong hai diem miit cua doqn thdng, da chi rd diem ndo la diem ddu, diem ndo Id diem cud'i
KI hieu
N^u vecta cd di^m dSu la M vk diim cudi la A^ thi ta ki hieu vecto dd la
MN
Nhi^u khi d^ thuan tien, ta ciing ki hieu mdt vecto xac dinh nao dd bang mot
chii in thudng, vdi miii ten d tren Chang han vecto a, b, x, y,
Vecto-khong
Ta bie't rang mdi vecta cd mdt di^m ddu va mgt di^m cudi ; mdi vecta hoan toan dugc xac dinh ne'u cho bie't dilm ddu va dilm cudi cua nd
Bay gid, vdi mdi dilm M bdt ki, ta quy udc cd mdt vecto ma dilm ddu la M
va dilm cudi ciing la M Vecto dd dugc ki hieu la MM vk ggi la veeta-khdng (cd gach ndi gitta hai tii)
II Vecto cd diem ddu vd diem cudi triing nhau goi la vectff-khong
2 Hai vectd cung phiTdng, cung hirdng
Vdi mdi vecto AB (khac vecto-khdng), dudng thing AB dugc ggi la gid cua vecta AB Cdn dd'i vdi vecto-khdng AA thi mgi dudng thing di qua A diu ggi la gia cua nd
M
^ ' ' '
Hinh 3
Trang 8a) Tren hinh 3, ta cd cac vecto AB, DC, EF, MN, QP
Hay chii y de'n hai vecto AS va D C , chung cd gia song song vdi nhau Hai
vecto AB va EF ciing cd gia song song Cdn hai vecta DC va EF thi cd
gia triing nhau
Trong cac trudng hgp dd, ta ndi rang : Cac vecta AB, DC, EF cd cUng phucmg, hay don gian la ciing phucmg
Hai vecto JWTV va QF cd gia cat nhau Ta ndi hai vecta dd khdng cung
pfttrang Vay ta cd dinh nghia
i Hai vecta dugc ggi Id cUng phuang ni'u chung cd gid song
song hodc triing nhau
Rd rang vecto-khdng ciing phuong vdi mgi vecto
b) Bay gid hay chu y tdi cac cap vecto ciing phuang tren hinh 4
N
B
D
Hinh 4
Hai vecto AB vk CD ciing phuong, va hon the' cac miii ten bilu thi AB va
CD cd cung hudng, cu thi la hudng tii trai sang phai
Trong trudng hgp nay, ta ndi: Hai vecto AB vk CD cung hu&ng
Hai vecto MN vk PQ cung phuang, tuy nhien ta thdy ring chiing khdng ciing hudng vi vecto MN hudng len phia tren, cdn vecto PQ thi hirdng
xud'ng phfa dudi
Trong trudng hgp nay, ta ndi: Hai vecto MN vk PQ ngugc hudng
Trang 93 Hai vectd bSng nhau
Mdi vecto diu cd mdt dd ddi, do la khoang each giiia dilm ddu va dilm
cudi cua vecta dd Db dai cua vecto a dugc kf hieu la \d\
Nhu vdy, ddi vdi vecto AB, PQ, taco
\AB\ = AB = BA, jpej = PQ = QP,
?2| Theo dinh nghTa dd ddi d trin thi veeta-khdng co do ddi bang bao nhieu ?
' D
Ta bilt ring hai doan thing ggi la binjg nhau ne'u ^^^^^^^^^^"-^^
dd dai cua chung bang nhau Tren hinh 5 ta cd A ^ ^ ^^-^^ ^
hWi thoi ABCD Bdn canh cua hinh thoi la bdn ^""^^^^^ ^ ^ ^
doan thing bing nhau Bdi vay ta vilt ^^B
AB = AD = DC = BC Hinh 5
?3| Hai vecta AB vd AD tren hinh 5 cung cd dd ddi bdng nhau, nhung lieu
chiing ta cd nen ndi rdng chiing bdng nhau vd vii't AB = AD hay khdng ?
Hieo dinh ngMa tren thi cac vecto-khdng diu bing nhau :
AA = fifi = F ? = Bdi vay, ttr nay cac vecto-khdng dugc kf hieu chung la 0
/ V H a y ve mdt tam giac ABC vdi cac trung tuyen AD, BE, CF, roi chi ra cac bp ba
vecto khdc 6 vd doi mdt bang nhau (cac vecto ndy c6 diem dau va diem cudi difdc
j^y trong sdu dilm A, B, C, D, E, F)
N l u G Id trong tdm tam gidc ABC thi cd t h i viet ^ = GD hay khdng ? Vi sao ?
7
Trang 10Cho vectd a vd mdt diem O bd't ki Hay xac djnh diem A sao cho OA = a Cd bao nhieu dilm A nhi/ vay ?
Trong vat If, mdt luc thudng dugc bilu thi bdi mdt vecto Dd dai cua vecto bilu thi cho cudng dd ciia luc, hudfng cua vecto bilu thi cho hudng cua luc tac dung Dilm ddu cua vecta dat d vat chiu tac dung cua luc (vdt dd thudng dugc xem nhu mdt dilm)
Tren hinh 6, hai ngudi di dgc
hai ben bd kenh va ciing keo
mdt khiic gd di ngugc ddng
Khi dd cd cac luc sau day tac
dung vao khuc gd : hai luc
keo Fl va F2 cua hai ngudi,
luc F3 cua ddng nudc, luc
ddy Ac-si-met F4 cua nudc
len khiic gd va trgng luc F5
cua khiic gd
Hinh 6
Uy-li-am Ha-min-ton (William Hamilton) Id nha toan hpc ngirdi Ai-len Ong da viet mot trong nhiing cdng trinh toan hpc d i u tien ve vectd Ong la ngirdi xay dimg khai niem qua-tec-ni-dng, mot dai li/gng gidng nhir vecto, cd nhieu iJng dung trong Vat If
Cau hoi va bai tap
1 Vecto khac vdi doan thing nhu thi nao ?
2 Cac khing dinh sau day cd diing khdng ?
a) Hai vecto ciing phuong vdi mdt vecto thii ba thi ciing phuofng
8
Trang 11b) Hai vecto cung phuang vdi mdt vecto thii ba khac 6 thi ciing phuang e) Hai vecto ciing hudng vdi mdt vecto thii ba thi ciing hudng
d) Hai vecto ciing hudng vdi mdt vecto thii ba khac 0 thi cung hudng e) Hai vecto ngugc hudng vdi mdt vecto khac 6 thi cung hudng
f) Dilu kien cdn va du di hai vecto bing nhau la chiing cd do dai bing nhau
Trong hinh 7 dudi day, hay chi ra cac vecto cung phuong, cac vecto cung hudng va cac vecta Tjing nhau
A
Hinh 7
4 Ggi C la trung dilm cua doan thing AB Cac khing djnh sau day diing
hay sai ?
a) AC vk BC ciing hudng ; b) AC va AS ciing hudng ;
c) AS vdfiC ngugc hudng ; d)\'AB\ = \BC\;
e ) | A C | = |fiC|; f) | A5| = 2|5C|
5 Cho luc giac diu ABCDEF Hay ve cac vecto bing vecto AB vk cd
a) Cac dilm ddu Id B,F,C; b) Cac dilm cudi la F, D, C
T 6 N G CUA H A I VECTO
Chiing ta da bilt vecto la gi va thi nao la hai vecto bing nhau Tuy cac vecto khdng phai la nhiing con sd, nhung ta cting cd thi cdng hai vecto vdi
nhau dl dugc tdng ciia chiing, ciing cd thi trix di nhau dl dugc hieu eua
chiing Hgc sinh cdn nim viing each xac dinh tdng va hieu ciia hai vecto ciing nhu cac tfnh chdt cua phep cdng va phep trii vecto
Trang 121 Djnh nghTa tong cua hai vectd
Hinh 8 md ta mdt vat dugc ddi sang vi
trf mdi sao cho cac dilm A, M, cua
vat dugc ddi din cac dilm A', M', ma
AA' = MM' = Khi dd ta ndi ring :
• - • • • • • >
vat duac "tinh tien" theo vecto AA'
?l| Tren hinh 9, chuyen ddng cua mdt vdt
dugc mo td nhu sau : Tic vi tri (I), nd dugc
tinh tie'n theo vecta AB di den vi tri.(II)
Sau do nd lai dugc tinh tien mot ldn nita
theo vecta BC dedi'n vi tri (III)
Vdt cd the dugc tinh tien chi mdt ldn de
tic vi tri (I) di'n vi tri (III) hay khdng ?
Ne'u cd, thi tinh tii'n theo vecta ndo ?
Hinh 8
Hinh 9
Nhu vay cd thi ndi : Tinh tiln theo vecto AC "bing" tinh tiln theo vecto
AB rdi tinh tiln theo vecto BC
Trong Toan hgc, nhiing dilu trinh bay tren day dugc ndi mdt each ngdn ggn :
Vecta AC la tdng cua hai vecta AB vd BC
Ta di din dinh nghia (h 10)
Cho hai vecta a vd b Ldy mot diem A nab dd rdi xdc dinh cdc diem B vd C sao cho AB = a BC = b Khi do vecta AC
dugc ggi Id tong eua hai vecta a vd b Ki hiiu
Trang 13Hay ve mdt tam giac ABC, rdi xdc djnh cac vecto tong sau day
a) A5 + CB ;
b) AC + BC
Hay ve hinh binh hdnh ABCD vdi tam O {O Id giao dilm hai di/dng cheo) Hay vilt vectd AB dudi dang tong cOa hai vecto ma cac dilm mut cCia chung dirpc lay trong ndm dilm A, B, C, D, O
2 Cdc tinh chat cua phep cong vectd
^Chijng ta biet rang phep cong hai sd cd tfnh chat giao hoan Ddi vdi phep cdng hai vecto, tfnh chat do cd diing hay khdng ? Hay kiem chufng bang hinh ve
^Hay ve cac vecto OA = d, AB = b, BC = c nhirtren
' hinh 11 Tren hinh ve dd
a) Hay chi ra vecto ndo Id vecto a + b, va do dd,
vecto ndo Id vqcta (a + b) + c
b) Hdy chi ra vecto ndo Id vecto b +c vk do do 6
vecto ndo Id vecto a + ib +c)
c) Tii dd cd t h i rut ra ket ludn gi ?
Hinh 11
Tix cdc hoat ddng tren, chiing ta suy ra cac tfnh chdt sau day cua phep edng
vecto (ciing gidng nhu cac tfnh chdt cua phIp cdng cac sd')
1) Tinh chat giao hodn : a + b = b +a ; 2) Tinh chdt ket hgp : (a + b) + c = a + ib + c);
3) Tinh chdt cua veeta-khdng : a + 0 = d
Trang 143 Cac quy tac c i n nhd
Tix dinh nghia tdng cua hai vecto ta suy ra hai quy tic sau day
QUY TAG BA DIEM (h 12) M
b) Hdy gidi thich tai sao ta cd \d + b\ < \d\ + \b\
Bai toan 1 Chiing minh rdng vdi bdn diem bd't kiA, B, C, D, ta cd
AC + W = AD + BC
Gidi Dung quy tie ba dilm ta cd thi vilt AC = AD + DC Bin vky
AC + ^ = AD + DC + 5D = AD + 5D + DC (do tinh chdt giao hoan)
= AD + BC (quy tie ba dilm dd'i vdi B, D, C)
^Dung quy tac ba dilm, ta cung cd the viet AC = AB + BC Hay t i l p tue d l cd mdt
cdch chufng minh khdc ciia Bdi todn 1
Bai toan 2 Cho tam gidc diu ABC cd canh
bdng a Tinh dd ddi cua vecta tdng AB + AC
Gidi Ta ldy dilm D sao cho ABDC la hinh binh
hanh (h 14) Theo quy tic hinh binh hanh ta cd
'AB + AC = AD Hinh 14
12
Trang 15vay \AB + AC\ = \AD\ = AD
Vi ABC la tam giac diu nen ABDC la hinh thoi va dd dai AD bing hai ldn dudng cao AH cua tam giac ABC, do dd AD = 2 x = a-43
dung hinh binh hanh AGBC Mudn vay, ta chi
cdn ldy dilm C sao cho M la trung dilm GC
Khi dd GA + GB = GC' = CG Bdi vay
Ni'u M Id trung diem doan thdng AB thi MA + MB = 0;
Ni'u G Id trgng tdm tam gidc ABC thi GA + GB + GC = 0
Quy tic hinh binh hanh thudng dugc dp dung trong Vat If dl xac dinh hgp luc cua hai luc cung tac dung len mdt vat
13
Trang 16Trdn hinh 16, cd hai luc Fj va F2 ciing
tac dung vao mdt vat tai dilm O Khi dd
cd thi xem vat chiu tac diing cua luc
F = Fl + F2, la hgp luc cua hai luc Fj
va Fj Luc F dugc xac dinh theo quy tie
hinh binh hanh
Cau lioi va bai tap
6 Chiing minh ring neu AF = CD thi AC = SD
7 Tii giac ABCD la hinh gi nlu AS = DC va JAFI = | F C | ?
8 Cho bdn diem bdt ki M, A^, F, Q Chiing minh cac ding thiic sau
10 Cho hinh binh hanh ABCD vdi tam O Hay diln vao chd trdng ( ) dl dugc
ding thiic diing
12 Cho tam giac diu ABC ndi tilp dudng trdn tam O
a) Hay xac dinh cac dilm M, N, P sao cho
Trang 1713 Cho hai luc F^ va F2 cung cd dilm dat tai O (h.l7) Tim cudng dd luc
tdng hgp cua chung trong cac trudng hgp sau
a) Fj va F2 diu cd cudng dd la lOON, gdc hgp bdi ^ va ^ bing 120° (h 17a);
b) Cudng dd cua ^ la 40N, eua ^ la 30N va gdc giiia ^ va ^ bing 90° (h 17b)
HlfiU CUA HAI VECTO
1 Vectd doi cua mot vectd
Ni'u tdng cua hai vecta a vab la veeta-khdng, thi ta ndi a la
—» —»
vecta ddi cua b, hodc b Id vecta dd'i ciia a
?t| Cho doan thdng AB Vecta dd'i ciia vecta AB Id vecta ndo ? Phdi chdng mgi vecta cho trudc diu cd vecta dd'i ?
Vecta dd'i cua vecta a dugc ki hiiu la -a
Nhu vay a + i-a) = i-a) + 5 = 6
Ta cd nhdn xlt sau ddy
Vecta dd'i cua vecta a la vecta ngugc hudng vdi vecta a vd
cd cdng do ddi vdi vecta a
Ddc biit, vecta dd'i ciia vecta 0 Id vecta 0
15
• /
Trang 18y i du Gia sit ABCD la hinh binh hanh (h.l8)
Khi dd hai vecta AB vk CD cd cung dd dai
nhung ngugc hudng Bdi vay
Hieu ciia hai vecta a vd b, ki hiiu a -b Id tong eua vecta a
va vecta dd'i cua vecta b, ticc la
—» —*
d-b = d + i-b)
Phep ldy hiiu cua hai vecta ggi Id phep trie vecta
Sau day la each dung hieu a - b nlu da
cho vecto a vk vecto b (h 19) Ldy mdt
dilm O tuy y rdi ve OA = a vk OB = b
Kiiid6BA=d-b
Hinh 19
'T2\ Hdy gidi thich vi sao ta lai ed BA = a -b (h 19)
Quy t^c ve hieu vecto
Quy tie sau ddy cho phep ta bilu thi mdt vecto bdt ki thanh hieu cua hai vecto cd chung dilm ddu
Ni'u MN Id mdt vecta dd cho thi vdi
Trang 19Gidi Ldy mdt dilm O tuy y, theo quy tic vl hieu vecto, ta cd
AB + CD = OB-dA + OD-dC
AD + CB = dD-dA + dB-OC
So sdnh hai dang thiic tren ta suy ra AF + CD = AD + CF
^ 2 (Giai bai toan tren b^ng nhumg each khac)
\a) Ding thiic can chufng minh ttrong di/ong vdi ding thiic AB-^ = CB-CD
TCr do hay neu ra cdch chiing minh thuf hai ciia bdi toan
b) Ding thiid c^n chCfrig minh cung tuang dirong vdi ding thiic AB-CB = ^-CD
Tit do hay neu cdch chiing minh thii ba cCia bdi toan
c) Hiln nhien ta cd AB + BC + CD + DA = 6 Hay neu each chiing minh thuf ti/
Cau hoi va bai tap
14 Tra ldi cac cau hdi sau day
a) Vecto ddi eua vecto -a Ik vecto nao ?
b) Vecto ddi cua vecta 0 la vecto nao ?
c) Vecto ddi cua vecto a + b Ik vecto nao ?
15 Chiing minh cac minh dl sau day
17 Cho hai dilm A, F phan biet
a) Tim tap hgp cac dilm O sao cho OA = OB ;
b) Tim tap hgp cac dilm O sao cho OA = -OB
18 Cho hinh binh hanh ABCD Chiing minh ring 'DA-DB + DC = 0
17
Trang 2019 Chiing minh ring AF = CD khi va chi khi trung dilm cua hai doan thing
AD va BC triing nhau
20 Cho sau dilm A,B,C, D, E, F Chiing minh ring
AD + 'BE + CF = AE + W + CD = AF + 'BD + CE
TICH CUA MOT VECTO V 6 I M 6 T sd
Ta da bilt the nao la tdng ciia hai vecto Bay gid nlu ta ldy vecto a cdng vdi chfnh nd thi ta ed thi ndi kit qua la hai ldn vecto a, vilt la 2 3 , va goi
la tich cua sd 2 vdi vecto a, hay la tfch eua a vdi 2
Trong muc nay ta se ndi din tfch eua mdt vecto vdi mdt sd thuc bd't ki
1 Djnh nghTa tich cua mot vectd vdi mot so
Xet cac vecto tren hinh 20 Ta hay chii y
den hai vecto a vkb Hai vecto dd cd
Cling hudng, va dd dai vecto b bing hai
ldn dd dai vecto a , tiic la |S| = 2\d\
Trong trudng hgp dd ta vilt b = 2d vk
—»
ndi ring : Vecta b bdng 2 nhdn vdi vecta
a (hodc bdng vecta a nhdn vdi 2), hodc
vecta b la tich ciia vecta a vdi sd'2
'a
/ / / /
k Ve hinh binh hdnh ABCD
a) Xdc dinh diem E sao cho AE = 2BC
U]cA
\ 2)
b) Xac djnh dilm F sao cho AF
18
Trang 21Phip ldy tich cua mdt vecta vdi mdt sd ggi la phep nhdn vecta vdi sd (hodc phip nhdn so vdi vecta)
Nhdn xet Tii dinh nghia ta thdy ngay ld = d, (-l)a la vecto dd'i cua a,
tiic la (-l)a = -a
Vl du Tren hinh 21, ta cd tam giac ABC ydi MvkN ldn lugt la trung dilm hai canh AB vk AC Khi dd ta cd
2 Cdc tinh chat cua phep nhan vectd vdi so
Dua vao dinh nghia phep nhan vecto vdi sd' ta ed thi chirng minh eac tfnh chdt sau ddy
Vdi hai vecta bdt ki a, b vd mgi sd'thuc k, I, ta cd 1) kild) = ikl)d ;
2) ik + l)d = kd + la ; 3) kia + b) = ka + kb ; kia - b) = ka - kb ; 4) ka =0 khi vd chi khi k = 0 hodc a = 0
19
Trang 22^ 2 {DikiSm chdng tinh chat 3 vdi k = 3)
^a) Ve tam giac ABC vdi gia thiet ^ = d va^ = b
b) Xac djnh diem A ' sao cho A'B = 3d vd dilm C sao cho BC' = 3b
c) Cd nhdn xet gi ve hai vecto AC vd A'C">
d) Hay k i t thiic viec chufng minh tfnh cha't 3 bang each diing quy tac ba dilm:
CHUY
1) Do tfnh chdt 1, ta cd i-k)d = i-l.k)d = (-1)(H) = - ( H ) Bdi vdy
ca hai vecto i-k)d vk -ika) diu cd thi vilt don gian la -ka
2) Vecto — 3 cd thi vilt la — Ching han — a cd thi vilt la —
n n ' 3 3 Bai toan 1 Chicng minh rdng diem I la trung diem cua doan thdng AB khi
vd chi khi vdi diem M bdt ki, ta cd MA + MB = 2MI
Gidi ih 22) Vdi dilm M bdt ki, ta cd
'MA = ~MI + 1A,
Nhu vay
MA -I- MF = 2M/ + 1A + 1B Hinh 22
Ta bilt rang / la trung dilm cua AB khi va chi khi M -i- ^ = 6 Tii dd suy ra
dilu phai chiing minh
Bai toan 2 Cho tam gidc ABC v&i trgng tdm G Chicng minh rdng v&i diim
M bd't ki, ta cd
MA + MB + MC = 3MG
3 (BSgiai Bai toan 2) (h 23)
' a) Tirong tir Bdi todn 1, hay bilu thj cac vecto MA, IAB
vd ^C qua vecto ^G va tCmg vecto 0 4 , ^ GC
b) Tfnh tong MA -^ JiB + MC Vdi chu y rang G Id trpng
tam tam giac ABC, hay suy ra dieu phai chiing minh Hinh 23
20
Trang 23»"»'
3 Dieu kien de hai vectd cung phi/dng
Ta da bilt ring nlu b = ka thi hai vecto a vkb ciing phuong Dilu ngugc
lai cd dung hay khdng ?
?2| Trong phdt bieu d trin, tai sao phdi cd diiu kiin a ^ 0 ?
Dieu yA^n dl ba diem thang hang
Dieu kiin cdn vd dii de ba diem phdn biit A, B, C thdng hdng la cd sd'k sao cho AB = kAC
Chvcng minh Ba dilm A,B,C thing hang khi va chi khi hai vecto AB vk
AC cung phuong Bdi vay theo tren ta phai cd AF = kAC
Bai toan 3 Cho tam gidc ABC ed true tdm H, trgng tdm G vd tdm du&ng
trdn ngoai tiip O
a) Ggi I la trung diim cua BC Chdng minh AH = 201
b) Chicng minh OH = OA + OB + OC
C) Chvmg minh ba diem 0,G,H thdng hdng
21
Trang 24Gidi ih 25)
a) De thd'y AH = 201 nlu tam giac ABC vudng
Neu tam giac ABC khdng vudng, ggi D la dilm dd'i xiing cua A qua O
Khidd
A
BH II DC (vi ciing vudng gdc vdfi AC),
BD II CH (vi ciing vudng gdc vdfi AB)
Suy ra BDCH la hinh binh hanh, do do
I la trung dilm eua HD Tix dd
Suy ra ba dilm 0,G,H thing hang
Dudng thing di qua ba dilm ndy ggi la dudng thdng O-le ciia tam giac ABC
» • » '
4 Bieu thj mot vectd qua hai vectd Ithong cung phifdng
Cho hai vecto a vk b Nlu vecto c cd thi vilt dudi dang c = ma + nb v6i mvk n la hai sd thuc nao dd, thi ta ndi ring : Vecta c bieu thi dugc
qua hai vecta a vd b
Mdt cau hdi dat ra la : Ni'u dd cho hai vecta khdng cUng phuang a vd b thi phdi chdng mgi vecta diu cd the bieu thi dugc qua hai vecta do ?
Ta cd dinh If sau day
DINH U
Cho hai vecta khdng ciing phuang a vd b Khi dd mgi vecta X deu cd the bieu thi dugc mdt cdch duy nhdt qua hai vecta a vd b, nghia Id cd duy nhdt cap sd'm vd n sao
—*
cho X = md + nb
22
Trang 25ChUcng minh
Tix mdt dilm O nao dd, ta ve cac vecto
'OA = a, 'OB = b, 'ox = X (^ 26)
Nlu dilm X nim tren dudng thing OA
thi ta cd sd m sao cho OX = mOA
Nlu dilm Xkhdng nim tren OA vk OB thi ta cd thi ldy dilm A' tren OA va
dilm F ' tren OB sao cho OA'XB' la hinh binh hanh Khi dd ta cd
OX = 0A' + OB', vk dd dd cd cac sd m, n sao cho QX = mOA + nOB, hay
m-m' trai vdi gia thilt, vay m = m' Chiing minh tuong tu ta ciing co n = n'
Cau Ii6j va bai tdp
21 Cho tam giac vudng cdn OAB vdi OA = OB = a Hay dung eac vecto sau
ddy va tfnh dd dai cua chiing
OA + OB; OA -OB ; 30A +40B;
— OA +2,50B ;
4 '
lioA-loF
4 7
22 Cho tam giac OAB Ggi M, N ldn lirgt la trung dilm hai canh OA vk OB
Hay tim cdc s6mvkn thfch hgp trong mdi ding thiic sau day
Trang 2623 Ggi M va A^ ldn lugt la trung dilm cac doan thing AB va CD Chiing minh ring
2MAr = AC + BD = AD + BC
24 Cho tam giac ABC vk diim G Chiing minh rang
a) Nlu GA + GF + GC = 0 thi G la trgng tam tam giac ABC ;
b) Nlu cd dilm O sao cho OG = -{oA + 0B + Oc) thi G la trgng tdm
3
tam giac ABC
25 Ggi G Id trgng tdm tam gidc ABC Dat a = GA vk b =GB Hay bilu thi mdi vecto AB, GC, BC, CA qua cac vecto a vk b
26 Chiing minh ring nlu G va G' ldn lugt la trgng tdm tam giac ABC vk tam
giac A'F'C thi
3GG' = AA'+ BB'+ CC
Tix dd hay suy ra dilu kien cdn va du di hai tam gidc ABC vk A'B'C co
trgng tdm triing nhau
27 Cho luc giac ABCDEF Ggi F, Q, R, S, T, U ldn lugt la trung dilm cac canh
AB, BC, CD, DE, EF, FA Chiing minh ring hai tam gidc PRT vk QSU cd
trgng tam trimg nhau
28 Cho tii gidc ABCD Chiing minh ring
a) Cd mdt dilm G dUy nhdt sao cho GA + GF + GC -i- ^ = 6 Dilm G
nhu the' ggi la trgng tdm ciia bdn diem A, B, C, D Tuy nhien, ngudi ta vSn quen ggi G la trgng tdm ciia tic gidc ABCD
b) Trgng tdm G la trung dilm cua mdi doan thing nd'i cac trung dilm hai canh dd'i eua tii giac, nd ciing la trung dilm cua doan thing ndi trung dilm hai dudng cheo eua tii giac
c) Trgng tdm G nim tren cae doan thing ndi mdt dinh cua tii giac va trgng tdm cua tam giac tag bdi ba dinh cdn lai
24
Trang 27TRUC TOA DO VA Hfi TRUC TOA D O
6 ldp 7, chiing ta da lam quen vdi true va he true toa dd Dl-cac vudng gdc
Trong phdn nay, chung ta se ndi ki hon vl cac khai niem dd
1 True toa do
True toq do (cdn ggi la true, hay true so) la mdt dudng thdng trin do da xdc dinh mdt diem O vd mdt vecta i cd do ddi bdng 1 *
Hinh 27
Dilm O ggi la gd'c toq do, vecto / ggi la vecta dem vi cua true toa dd
True toa dd nhu vay dugc kf hieu la iO;l) Ta ldy dilm / sao cho 01 = 7,
tia 01 cdn dugc kf hieu Id Ox, tia ddi cua Ox la Ox' Khi dd true iO; i) cdn
ggi la true x'Ox hay true Ox (h 27)
Toa dp ciia vecto va cua dilm tren true
Cho vecto M nam tren true iO; i) Khi dd cd sd a xdc dinh di u = ai S6
a nhu thi ggi la toq dp cua vecta u dd'i vdi true iO; i)
Cho dilm M nim tren true iO; i) Khi dd cd sd m xdc dinh dl OM = mi
Sd m nhu thi ggi la toq do cua diem M ddi vdi true ( 0 ; i) (cung la toa dd
cua vecto OM)
h 1
Tren true Ox cho hai dilm A va B Ian liTdt cd toa dp Id a vd b Tim toa dp cQa vectd
AB vd vectd BA Tim toa dp trung dilm cOa doan thing AB
25
Trang 28Do dai dai so cua vecto tren true
Nlu hai dilm A, F nim tren true Ox thi toa dd cua vecto AB dugc ki hieu
la AB vk ggi la do ddi dqi sdcixa vecto AB trdn true Ox
*Nhu vay
'AS = 1^1
Tix dinh nghia tren ta suy ra cac khing dinh sau day : Tren true sd,
1) Hai vecto 1^ va^ bing nhau khi va chi khi AF = CD
(hiln nhien);
2) He thiic H + ^ - ^ tuong duong vdi he thiic
AB + ^ = 'AC (he thiic Sa-lo)
That vay, 'A£+ 'BC = ~AC o~^l+ ~BCl = ~ACl
<:> (AF -i- 'BC'^ = 'AC7 ^JB + W = 'AC
2 l-le true toa do
Trtn hinh 28, ta cd mdt he true toa dd vudng
gdc Nd bao gdm hai true toa dd Ox vk Oy
vudng gdc vdi nhau
—»
Vecto don vi tren true Ox Id i, vecto don vi
tren true Oy la j
Diim O ggi la gdc toq do True Ox ggi la true
hodnh, true Oy ggi la true tung
He true toa dd vudng gdc nhu tren cdn ggi don gian la he true toq dd va thudfng dugc kf hidu la Oxy hay (G ; ^,7) •
CHOY
Khi trorig mat phang da cho (hay da chgn) mdt he true toa dd, ta
se ggi mat phing dd la mat phdng toq do
Hinh 28
26
Trang 293 Toa do cua vectd doi vdi he true toa do
^Quan sat hinh 29 Hay bilu thj
—•
moi vectd a, b, u, v qua hai
vectd r, 7 dirdi dang xl + y~]
vdi X, y Id hai sd thuc ndo dd
DINH NGHiA
>"
O
Hinh 29
Dd'i v&i hi true toq dd iO ; i,j), ni'u a = xi + yj thi cap sd
ix ; y) dugc ggi Id toq do cua vecta a, ki hieu Id a = ix ; y) hay aix ;y) So thic nhd't x ggi la hodnh do, sdthic hai y ggi la tung dd cua vecta a
?l| a) Tim toq dd cua cdc vecta a, b, u, v trin hinh 29
b) Ddi v&i hi true toq dd iO ;i,j), hdy chi ra toq do cua cdc vecta 0, i j l+'j 2]-1 -7-37 43i + 0,l4j
Nhdn x4t Tii dinh nghia toa dd cua vecto, ta thdy hai vecto bing nhau khi
vd chi khi chiing cd ciing toa dd, nghia la
f dix,
Trang 30.»'
4 Bieu thurc toa do cua cac phep toan vectd
Trong muc nay ta ndi vl bilu thiic toa dd cua cac phep toan vecto sau :
phep cdng, phep trii vecto vd phep nhdn vecto vdi sd
^Cho hai vecto a = i-3;2) va b = i4;5)
a) Hay bilu thj cac vectd a, b qua hai vectd / , j
b) Tim toa dp ciia cdc vectd c = a + b ; d = 4a ; U = 4a -b
3) Vecta b cdng phuang v&i vecta -a ^ 0 khi vd chi khi cd sd
k sao cho x' =kx, y' =ky
?2 Mdi cap vecta sau cd cUng phucmg khdng ?
a)d = iO;5)vdb = ( - 1 ; 7) ; b) M = (2003 ;0)vdv = il;0) ;
c)e= (4 ; - 8) va 7 = (-0,5 ; 1) ; d) fn = i42 ;3) vd n = (3 ; 42)
5 Toa do cua diem
Trong mat phing toa dd Oxy, mdi dilm M dugc xac dinh hoan toan bed
*• •
vecto OM Do vay, nlu bie't toa dd cua vecto OM thi dilm M se dugc xac
dinh Vi le dd ngudi ta dinh nghia
I Trong mat phdng toq do Oxy, toq do cda vecta OM dugc ggi la toq do cua diem M
Nhu vay, cap sd ix ; y) la toa dd cua dilm M khi va chi khi OM = ix ; y)
Khi dd ta vilt Mix ; y) hoac M = (x; y)
Sd X ggi la hodnh do cua dilm M, sd y ggi la tung do ciia dilm M
28
Trang 31Nhdn xet (h 30) Ggi H, K ldn lugt la hinh ehilu cua
M tren Ox vk Oy Khi dd, nlu M = (jc ; j) thi
OM = ^ r + );7 = G ^ + G^ Suy ra
xi = ^ hay X = ^ ; y] = 'dk hay y = O^K
44i.4
Tren hinh 31
a) Toa dd cda mdi dilm O, A, B, C, D bang
bao nhieu ?
b) Hay tim dilm E cd toa dp (4 ; -4)
c) Tim toa dp cQa vectd AB
r V&i hai diem Mix^j; y^) vd Nix^; yp^) thi
MN = iXf^ -XM;yN -yM)'
?3| Hdy gidi thich vi sao cd ki't qud trin
CHUY
Dl thuan tien, ta thudng diing kf hieu ix^ ;y^f) di chi toa dd
cua dilm M
6 Toa do trung diem cua doan thang va toa do cua trong tam tam giac
KTrong mdt phlng toa dp Oxy, cho hai dilm Mixj^ ; y^^), iV(% ; y^^) Gpi P Id trung dilm cCia doan thing MN
a) Hay bilu thj vectd OP qua hai vectd OM va ON
b) TCr dd hay tim toa dp diem P theo toa dp cCia M va N
Trang 32^Tim toa dd dilm M' ddi xulhg vdi dilm M(7 ; -3) qua dilm A(l; 1)
I Trong mdt phlng toa dp Oxy, cho tam giac ABC vdi trpng tdm G
a) Hay viet he thiic giiia cdc vectd OA, OB, OC vaOG
h) Jit do suy ra toa dp cCia G theo toa dp ciia A, B, C
b) Tim toq do ciia trgng tdm tam gidc ABC
Gidi a) Ta cd AF = (- 2; 4) va AC = (- 1; 3) Do — ^ - nen AB, 'AC
khdng ciing phuong, suy ra A, F, C khdng thing hang va chdng la ba dinh cua mdt tam gidc
b) Ta cd X + Xg + Xr 2 + 0 + 1 ^A ^ ^B ^ ^C = 1 va yA^yB+ yc ^ 0 + 4-H3 ^ 7
3 3 3 3 3
vay toa do cua trgng tam tam gidc ABC la | 1; — |
Cau hoi va bai tap
29 Trong mat phing toa dd, mdi menh d l sau diing hay sai ?
a) Hai vecto a(26; 9) va 6(9; 26) bing nhau
b) Hai vecto bing nhau khi va chi khi chiing cd hoanh dd bing nhau va tung dd bing nhau
e) Hai vecto ddi nhau thi chiing cd hoanh dd d6i nhau
d) Vecto a cung phuong vdi vecto i nlu a cd hoanh dd bang 0
e) Vecto a cd hoanh dd bing 0 thi nd ciing phuong vdi vecto
7-30
Trang 3330 Tim toa dd cua cac vecto sau trong mat phing toa dd
a) Tim toa dd cua vecto u = 2d -3b +c
h) Tim toa dd cua vecto x sao cho x + d = b -c
c) Tim cdc sd k, ldi c = ka + lb
32 Cho u, = —i-5j v = ki -4j
Tim cdc gid tri cua k di hai vecto u, v cung phuong
33 Trong cdc menh dl sau, mdnh dl nao diing ?
a) Toa dd ciia dilm A bing toa dd cua vecto OA, vdi O la gd'c toa dd
b) Hodnh dd cua mdt dilm bing 0 thi dilm dd nim tren true hoanh
c) Dilm A nim tren true tung thi A cd hoanh dd bing 0
d) F la trung dilm cua doan thing AB khi va chi khi hoanh dd dilm F bing
trung binh cdng cae hoanh dd cua hai dilm A, F
e) Tu" giac ABCD la hinh binh hanh khi va chi khi Xfi^+ XQ = x^+ xj^ vk
yh
'^yc=yB-^yD-34 Trong mat phing toa dd, cho ba dilm A(-3 ; 4), F(l ; 1), C(9 ; -5)
a) Chiing minh ba dilm A, F, C thing hdng
b) Tim toa dd dilm D sao cho A la trung dilm eua BD
c) Tim toa dd dilm E trtn true Ox sao cho A, F, F thing hang
35 Cho dilm Mix ; y) Tim toa dd cua cdc dilm
a) Mj ddi xiing vdi M qua true Ox;
b) M2 dd'i xiing vdi M qua true Oy ;
c) M3 ddi xiing vdi M qua gd'c toa dd O
36 Trong mat phang toa dd, cho ba dilm A(- 4 ; 1), F(2 ; 4), C(2 ; - 2)
a) Tim toa dd cua trgng tam tam giac ABC
b) Tim toa dd dilm D sao cho C la trgng tam tam giac ABD
c) Tim toa dd dilm F sao cho ABCE la hinh binh hanh
31
Trang 346 N TAP cHtraNG i
I - Tom tat nhCimg l(ien thurc can nhd
1 Vecto
- Vecto khac 0 la mdt doan thing cd hudng Vecto-khdng cd dilm ddu
va dilm cudi triing nhau Vecto-khdng ed dd dai bing 0, ed phuong va hudng tuy y
- Hai vecto bing nhau nlu chung cd cung hudng va cung dd dai
2 Tong va hi|u cac vecto
- Quy tdc ba diem : Vdi ba dilm M, A^, F bdt ki, ta cd
MN + NP = MP Quy tdc hinh binh hdnh : Nlu OABC la hinh binh hanh thi
OA + dc = OB
- Quy tdc vi hiiu vecta: Cho vecto MA'^ Vdi didm O bdt ki, ta cd
3 Tich cua mdt vecto vdfi mot so'
- Nlu b = kd id^O) thi |K| = \k\.\d\ vk
b ciing hudng vdi a khi ^ > 0,
b ngugc hudng vdi a khi ife < 0
Trang 35- Dilm G la trgng tdm tam giac ABC khi va chi khi vdfi dilm O bdt ki, ta ed
OG = -iOA + ^ + OC)
4 Toa do cua vecto va cua diem
- D6i vdi he true (O ; 7, / ) hay Oxy
I) U = ia; b) <^ il = ai + bj ;
2) M = ix;y)oOM = ix;y)
- Nlu A = (JC; y),B = ix'; y') thi 'AB = ix'- x; y'- y)
- Niu M = ix; y) va V = ix'; y') thi
1) U + v = ix + x';y + y') ;
2) kU = ikx; ky)
ii - Cau hoi tir kiem tra
1 Hay ndi rd vecto khac doan thing nhu thi ndo
2 Nlu hai vecto AB vk CD bing nhau va ed gid khdng triing nhau thi bdn dinh
A, F, C, D cd la bdn dinh eua mdt hinh binh hanh hay khdng ?
3 Nlu ed nhilu vecto thi xdc dinh tdng cua chiing nhu thi nao ?
4 Hieu hai vecto dugc dinh nghia qua khdi niem tdng hai vecto nhu thi nao ?
5 Cho hai dilm A, F phan biet Vdi mdt dilm O bdt ki, mdi ding thiic sau ddy diing hay sai ?
a)'AB = dA-OB ; h)OA-0B = BA;
c) OA + OB = -BA ; d)dA + 'Bd = -AB
6 Cd thi dung phep nhan vecto vdi mdt sd dl dinh nghia vecto dd'i cua mdt vecto hay khdng ?
7 Cho hai vecto a vk b khdng ciing phuofng Trong eac vecto c, d, U, v, x,
y sau day, hay chi ra cac vecto cung hudng va cdc vecto ngugc hudng
33
Trang 361 0 1
c = —a + —b ; d = -d + -b ; u =3d + 4b ;
2 3 3 _ _ - , l l - » _ - >
V =3d - b ; x = — a — b ; y = - 9 a + 3b
4 3
Hai vecto c vk d co cimg phuong hay khdng ? Tai sao ?
8 Cho tam giac ABC vdi trung tuyin AM- vk trgng tam G- Mdi khang dinh sau
day diing hay sai ?
1
a)AM = 2AG; b)AG = - A M ; c) MG =-GA ;
d)AG = -(AB + AC); e)GB = AG + 'BG
9 Cho bilt toa do hai dilm A va F Lam the' nao d l
a) Urn toa dd eua vecto AB ?
b) Tim toa dd trung dilm eua doan thing AB ?
10 Cho bilt toa do ba dinh cua mdt tam giac Lam-thi nao d l tim toa dd cua
trgng tam tam giac dd ?
Ill - Bai tap
1 Cho tam gidc ABC Hay xac dinh cdc vecto
AB + BC ; CB + BA; AB + CA; BA + CB;
'BA + CA ; CB-CA ; AB-CB ; BC-AB
2 Cho ba dilm O, A, F khdng thing hang Tim dilu kien cdn va du dl vectd
OA + OB cd gia la dudng phan giac cua gdc AOB
3 Ggi O la tam cua hinh binh hanh ABCD Chiing minh ring vdi dilm M bdt
ki, ta cd
MO = -iMA + MB + MC + MD)
4 Cho tam giac ABC
a) Tim cae dilm M vkN sao cho
MA- MB + MC = 0 vk 2NA + NB + NC = 0
34
Trang 37b) Vdi cac dilm M,Nb cau a), tim cdc s6p vk q sao cho
MA^ = pAB + qAC
5 Cho doan thing AB vk diim I sao cho 2JA + 3 ^ = 0
a) Tim sd k sao cho AI = kAB
b) Chiing minh ring vdi mgi dilm M, ta cd
'MI = -'MA + -'MB
5 5
6 Trong mat phang toa dd Oxy, cho ba dilm A(-l ; 3), F(4 ; 2), C(3 ; 5)
a) Chiing minh ring ba dilm A, F, C khdng thing hang
b) Tim toa dd dilm D sao cho 73 = -3FC
c) Tim toa dd dilm E sao cho O la trgng tam tam giac AFF
IV - Bai tap trac nghiem
1 Cho tam gidc ABC Ggi A', F', C ldn lugt la trung dilm cua ede canh BC,
¥
CA, AB Vecto A'B' ciing hudng vdi vecto nao trong cac vecto sau day ?
(A) AF ; (B) AC ;
(C) BA ; (D) CB
2 Cho ba dilm M, N, P thing hang, trong dd dilm A^ nim giiia hai dilm M
va F Khi dd cae cap vecto nao sau day cung hudng ?
(A) MA^ va PN ; (B) MA^ va MP ;
(C) MP vk PN ; (D) A^M va A^F
3 Cho hinh chii nhat ABCD Trong ede ding thiic dudi day, dang thiic nao diing ?
(A) AF=CD ; (B) FC=DA