1. Trang chủ
  2. » Thể loại khác

AAE556 v g flutter lecture 32 The Vg method

19 284 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 526,11 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Airfoil dynamic motionθ t Khh KTθ xθ P=-L aero center e Ma V 2Purdue Aeroelasticity... This is what we’ll get when we use the V-g method to calculate frequency vs... When we do the V-g m

Trang 1

AAE 556 Aeroelasticity The V-g method

g

V/b ωθ

k decreasing

flutter point

mode 1

mode 2

1Purdue Aeroelasticity

Trang 2

Airfoil dynamic motion

θ (t)

Khh

KTθ

xθ P=-L

aero center

e

Ma

V

2Purdue Aeroelasticity

Trang 3

This is what we’ll get when we use the V-g method to calculate frequency vs airspeed and

include Theodorsen aero terms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Velocity (V/ ωθ b)

/ ω θ

3Purdue Aeroelasticity

Trang 4

When we do the V-g method here is

damping vs airspeed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 -1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Velocity (V/ ωθ b)

4Purdue Aeroelasticity

flutter

divergence

Trang 5

To create harmonic motion at all airspeeds we need an energy source or sink at all airspeeds

except at flutter

i Input energy when the aero damping takes energy out (pre-flutter)

i Take away energy when the aero forces put energy in (post-flutter)

5Purdue Aeroelasticity

Trang 6

2D airfoil free vibration with everything

but the kitchen sink

h g

ω

&

&& &&

Iθθ Mx h Kθ θ gθ g θ M M e ω

ω θ

&& &

&&

( − ω2M K + h   1 + i gh + g   ) h − ω2Mxθθ = P

( − ω2Iθ + Kθ   1 + i gθ + g   ) θ ω − 2Mx hθ = Ma

6Purdue Aeroelasticity

Trang 7

We will get matrix equations that

look like this

A(k, ω , g)E(k, ω , g)B(k)D(k) = 0

A B

D E

   

h / b

θ

 =

0 0

…but have structural damping that

requires that …

7Purdue Aeroelasticity

2

m b

µ

πρ

=

Trang 8

The EOM’s are slightly different from those before (we also multiplied the previous

equations by µ)

   

h / b

θ

 =

0 0

/ ω2

)[1 + i(gh + g)]} + Lh

B = µ xθ + Lα = Lh (1 / 2 + a)

E = µ rθ2{1 − ( ωθ2

/ ω 2

)[1 + i(gθ + g)]}

M h(1 / 2 + a) + Mα − Lα(1 / 2 + a)+ L h(1 / 2 + a)2

-8Purdue Aeroelasticity

Each term contains inertial, structural stiffness, structural damping and aero

information

1 2

h h

Trang 9

Look at the “A” coefficient and identify the eigenvalue – artificial damping is added to keep

the system oscillating harmonically

Ω2

= ( ωθ2

/ ω 2

)(1 + ig) = Ω2R

+ i Ω2I

9Purdue Aeroelasticity

We change the eigenvalue from a pure frequency term to a

frequency plus fake damping term So what?

2

1 h 1 h fa

ω

=  −    ÷ +  +

2

fakie

2

r

1

Trang 10

The three other terms are also

modified

   

h / b

θ

 =

0 0

B = µ xθ + Lα = Lh (1 / 2 + a)

D =+ µ xθ + MhLh(1/ 2 + a)

-10

Purdue Aeroelasticity

Each term contains inertial, structural stiffness, structural damping and aero

information

( )

2

2

2

1

1

2

ig

θ

θ

ω ω

−  + ÷+ −  + ÷+  + ÷

  +

 ÷

 

 

Trang 11

To solve the problem we input k and

compute the two values of Ω2

Ω12 = ( ΩR2

)1 + i( Ω2I

)1

Ω22 = ( ΩR2

ω1 = ωθ / ( ΩR)1

ω2 = ωθ / ( ΩR)2

g1 = ( ΩI2

)1 / ( Ω2R

)1

g2 = (ΩI2

)2 / (ΩR2

)2

11

Purdue Aeroelasticity

2

2

2

I

g

i θ

ω

ω ω

 ÷

 

=

The value of g represents the amount of damping that would be required to keep the system oscillating harmonically It should be negative for a stable system

Trang 12

Now compute airspeeds

using the definition of k

V 1 = b ω 1 / k

ω1 = ωθ / ( ΩR)1

ω2 = ωθ / ( ΩR)2

Remember that we always input k so the same value of k is used in both cases One k, two airspeeds and damping values

12

Purdue Aeroelasticity

Trang 13

Typical V-g Flutter Stability Curve

g

V/bωθ

k decreasing

flutter point

mode 1

mode 2

ghgθ

Ω2 = ( ωθ2

/ ω 2

)(1 + i g )

13

Purdue Aeroelasticity

' h

g = g + = g gθ + g

Trang 14

Now compute the eigenvectors

(b θ / h)1 = − D / E( Ω1 ) ; h

b = 1 ( Ω2 = Ω12

)

(h / b θ )2 = − B / A( Ω2) ; θ = 1 ( Ω2 = Ω22

)

14

Purdue Aeroelasticity

Trang 15

Example

Two-dimensional airfoil mass ratio, µ = 20

quasi-static flutter speed VF = 160 ft/sec

15

Purdue Aeroelasticity

0.03

h

Trang 16

Example

1 / k = 3.1250

Mα = 0.37500 − i3.1250

Mh = 0.50000

ωh = 10 rad / sec

ωθ = 25 rad / sec.

16

Purdue Aeroelasticity

Trang 17

The determinant

A = 19.8 96 − i4.0973 − 3.2 Ω2

B = − 11.3767 − i2.54 40

D = 2.5311 + i1.22919

E = 9.2380 − i2.3618 − 5.0 Ω2

A EBD = 16(Ω)4 + (−129.043+ i28.044)Ω2 +199.794 − i64 418= 0

17

Purdue Aeroelasticity

Trang 18

Final results for this k value – two

g’s and V’s

Ω2

= 4.0326 − i0.87638 ± 3.0067 − i3.0420

− 4.0326 − i0.87638 ± (1.9084 − i0.79702)

= 5.9410 − i1.67340

Ω22 = 2.1242 − i0.07936

ω2 = 17.153 rad / sec ( ωθ = 25 rad / sec)

V1 = 96.157 ft / sec

V2 = 160.810 ft / sec

b = 3.0 ft

18

Purdue Aeroelasticity

g = + g gθ = −

g = + g gθ = −

Trang 19

Final results

g = 0.03 Flutter

19

Purdue Aeroelasticity

Ngày đăng: 05/08/2016, 00:58

TỪ KHÓA LIÊN QUAN

w