AC Circuit AnalysisModule: SE1EA5 Systems and Circuits AC Circuit Analysis Module: SE1EA5 Systems and Circuits Lecturer: James Grimblebyy URL: http://www.personal.rdg.ac.uk/~stsgrimb/ em
Trang 1AC Circuit Analysis
Module: SE1EA5 Systems and Circuits
AC Circuit Analysis
Module: SE1EA5 Systems and Circuits
Lecturer: James Grimblebyy
URL: http://www.personal.rdg.ac.uk/~stsgrimb/
email: j.b.grimbleby reading.ac.ukj g y g
Recommended text book:
David Irwin and Mark Nelms
Basic Engineering Circuit Analysis (8th edition)
John Wiley and Sons (2005)
ISBN: 0-471-66158-9
Trang 2AC Circuit Analysis
Recommended text book:
David Irwin and Mark Nelms
Basic Engineering Circuit
Trang 3AC Circuit Analysis Syllabus
This course of lectures will extend dc circuit analysis to deal
AC Circuit Analysis Syllabus
This course of lectures will extend dc circuit analysis to deal with ac circuits
The topics that will be covered include:
AC voltages and currentsComplex representation of sinusoidsPhasors
Complex impedances of inductors and capacitorsDriving-point impedance
Frequency response of circuits – Bode plotsPower in ac circuits
Energy storage in capacitors and inductorsThree-phase power
Trang 4AC Circuit Analysis Prerequities
AC Circuit Analysis Prerequities
You should be familiar with the following topics:
SE1EA5: Electronic Circuits
Ohm’s LawSeries and parallel resistancespVoltage and current sourcesCircuit analysis using Kirchhoff’s Lawsy gThévenin and Norton's theorems
The Superposition Theorem
SE1EC5: Engineering Mathematics
Complex numbers
Trang 5AC Circuit Analysis
Lecture 1
AC Voltages and Currents Reactive Components
Trang 8Examples:
Frequency
pElectrocardiogram: 1 HzMains power: 50 Hz
Aircraft power: 400 HzAudio frequencies: 20 Hz to 20 kHz
AM radio broadcasting: 0.5 MHz – 1.5 MHz
FM di b d ti 80 MH 110 MH
FM radio broadcasting: 80 MHz – 110 MHzTelevision broadcasting: 500 MHz – 800 MHzgMobile telephones: 1.8 GHz
Trang 10Why Linear?
We shall consider the steady-state response of linear ac
Why Linear?
We shall consider the steady state response of linear ac
circuits to sinusoidal inputs
Linear circuits contain linear components such as resistors, capacitors and inductorsp
A linear component has the property that doubling the voltage across it doubles the current through it
Most circuits for processing signals are linear
Analysis of non-linear circuits is difficult and normally requires the use of a computer
Trang 11Why Steady-State?
Steady-state means that the input waveform has been
Why Steady State?
Trang 12Sinusoidal carrier waves are modulated to transmit
information (radio broadcasts)
Any periodic waveform can be considered to be the sum of a fundamental pure sinusoid plus harmonics (Fourier Analysis)
Trang 13Fourier Analysis
A square waveform can be considered to consist of a
f d t l i id t th ith dd h i i id
Fourier Analysis
fundamental sinusoid together with odd harmonic sinusoids
Square wave Sum
Fundamental
3 d h i
3rd harmonic
5th harmonic
Trang 14ft v
t
or: v(t) = v0 cos2 ft = v0 cos t
where =2 f is known as the angular frequency
t
Trang 16Ceramic tube
Resistors
Ceramic tubecoated withConductive film
Metal end
i v
Metal end cap
Trang 17Resistors
Trang 18Then:
t
( )t R
Trang 19dv C i
Cv q
Cv
ceramic
Al 0 (electrolytic)
Trang 20Capacitors
Trang 21Suppose that:
( )t v
dt
d C t
Trang 22)
( 1 v0t
i
t v
0
0)
(
)(
0 2
2 = =
i t
i
t v
Thus “resistance” varies between ±∞: not a useful concept
0)
(t1
p
Trang 23fC C
Trang 24Magnetisablecore
Copper wire
Core: air
ferritei
Inductance L
dt
di L
ironsilicon steel
Trang 25Inductors
Trang 26Suppose that:
( )t v
)(t
( )
∫
= 1 sin)
v
t
v L
Current lags voltage by /2 (90°)
Trang 27The reactance of an inductor is directly proportional to its
value and to frequency
Trang 28Resistance and Reactance
Trang 30(t Ri t v t
)(
dt
t
dv C t
)
()
dt
t
dv RC t
dt
t v
t v t
RC
t v
RC
t v dt
t
=+
Trang 31=
t v
t v
t v
t
cos)
(
cos)
(
1 0
Expanding the expression for v c:
( + )
= v t t
c
t B
t A
t v
t v
t
t B
t A
t
cossin
)(
+
−
=
Trang 32B t
A t
B t
−
Comparing the coefficients of sin t and cos t on both sides of
t RC
t RC
t RC
t B
t
p gthe equation:
0
B RC
−
0
v A
RC
Solving these simultaneous linear equations in A and B:
2 2 2
0 2
2 2
0
1
RCv B
C R
v A
+
=+
=
Trang 33AC Circuit Analysis
Thus:
2 2 2
0 1
2 2 2
0 1
1
sin1
cos
C R
v
B C
=
=
Thus:
RC C
1
At an angular frequency =1/RC:
C R
0 1
v v
)(
42
v t
⎠
⎝ 42
Trang 340.01/RC
Trang 35where x is the real part, y is the imaginary part (x and y are
both real numbers), and
11
2 = − j = −
j
Complex numbers are often the solutions of real problems,
Trang 37Complex Numbers: Polar Form
Polar form:
∠
r z
Complex Numbers: Polar Form
where r is the magnitude, and is the angle measured from
Trang 39Complex Numbers: Conversion
x
O
Rectangular to polar:
y z
y x
z r
Trang 40Complex Numbers: Inversion
If the complex number is in rectangular form:
Complex Numbers: Inversion
1
jy x
z
+
=
))(
(x jy x jy
jy x
jy x
(
jy x
jy x
Trang 41Complex Numbers: Conversion
When using the inverse tangent to obtain from x and y it is
Complex Numbers: Conversion
x
y
=tan
jy x
Trang 42Complex Numbers: Conversion
When using the inverse tangent to obtain from x and y it is
Complex Numbers: Conversion
necessary to resolve the ambiguity of
1 Calculate using inverse tangent:
Trang 43Complex Numbers: Conversion
Complex Numbers: Conversion
Convert to rectangular form
Trang 44Complex Numbers: Conversion
2
1 732 z = 1+ j 3Imaginary
(3
o
=
Real axis
Trang 45Complex Numbers: Conversion
Complex Numbers: Conversion
Convert to polar or exponential form:
j
z
+
=11
Magnitude:
2
11
1
01
2 2
12 + 2Angle:
0
1t
0t
)1
(1
44
01
1tan
1
0tan 1 1 ⎟ = − = −
Trang 46Complex Numbers: Conversion
Real axisO
0.5O
Imaginary
)45
(4
Trang 47Complex Exponential Voltages
We shall be using complex exponential voltages and currents
Complex Exponential Voltages
We shall be using complex exponential voltages and currents
to analyse ac circuits:
t j
Thi i th ti l t i k f bt i i th
t j
Ve t
This is a mathematical trick for obtaining the ac response
without explicitly solving the differential equations
It works because differentiating a complex exponential leaves
it unchanged apart from a multiplying factor:
t j t
j
Ve j
Ve dt
Trang 48Complex Exponential Voltages
S th t l ti l lt i li d
Complex Exponential Voltages
Suppose that a complex exponential voltage is applied
across a resistor:
t
t j
V
t )
(
t j
V R
t
v t
t j
Ve t
e R
V
=
R
The current through the resistor is also a complex
The current through the resistor is also a complex
exponential
Trang 49Complex Exponential Voltages
S th t l ti l lt i li d
Complex Exponential Voltages
Suppose that a complex exponential voltage is applied
across a capacitor:
dt
t
dv C t
t j
Ve t
t j
Ve dt
d C
dt
=
j
Ve t
CVe j
dt
=
C
The current through the capacitor is also a complex
The current through the capacitor is also a complex
exponential
Trang 50Complex Exponential Voltages
S th t l ti l lt i li d
Complex Exponential Voltages
Suppose that a complex exponential voltage is applied
across an inductor:
dt t
v L
t
t j
Ve t
t
j dt
Ve L
Ve L
The current through the inductor is also a complex
exponential
Trang 51Complex Exponential Voltages
A complex exponential input to a linear ac circuits results in all voltages and currents being complex exponentials
Of course real voltages are not complex
The real voltages and currents in the circuit are simply the real parts of the complex exponentials
Complex exponential: v (t) = e j t (= cos t + j sin t)
Complex exponential:
Real voltage:
)sin
cos(
)
t t
Real voltage: v r (t) = cos t
Trang 52AC Circuit Analysis
Lecture 3
Phasors Impedances Gain and Phase Shift Frequency Response
Trang 53then all other voltages and currents are also complex
exponentials:
t j t
j j
t j
t j t
j j
t
j c
I i
i t
i
e V e
e v e
v t
v
) (
1 1
)
( 1 1
2 2
1 1
)(
j j
1 v e j
j
e v V
=
=
Trang 54Phasors are independent of time, but in general are functions
of j and should be written:
Trang 55The impedance Z of a circuit or component is defined to be the
Impedance
The impedance Z of a circuit or component is defined to be the
ratio of the voltage and current phasors:
t j
Ve t
RIe Ve
t Ri t
v
t j t
j
c c
=
)()
Trang 56d C Ie
dt
C t
i
t j t
Ie t
CVe j
Ie
Ve dt
C Ie
t j t
j
t j t
I
CVe j
I V
Trang 57d L Ve
dt
L t
v
t j t
Ie t
LIe j
Ve
Ie dt
L Ve
t j t
j
t j t
V
LIe j
V
Trang 591
++
+
=Other rele ant circ it theor r les are Kirchhoff’s la s
4 3
2
Z
Other relevant circuit theory rules are: Kirchhoff’s laws,
Thévenin and Norton's theorems, Superposition
Trang 60Potential divider:
2 1
IZ V
Z Z
IZ V
2
2 1
Z V
Z Z
2
Z Z
Z V
Trang 61AC Circuit Analysis
Suppose that a circuit has an input x(t) and an output y(t),
AC Circuit Analysis
where x and y can be voltages or currents
The corresponding phasors are X(j ) and Y(j )
The real input voltage x(t) is a sinusoid of amplitude x0:
)(
)(
)cos(
)(t x t re x e j t re Xe j t x
and the real output voltage y(t) is the real part of the complex
)(
)(
)cos(
)(t x0 t re x0e j t re Xe j t
and the real output voltage y(t) is the real part of the complex
exponential output:
)(
)(
)cos(
)(t y0 t re y0e j e j t re Ye j t
Trang 62=
0 0
The voltage gain g is the ratio of the output amplitude to the
y
0 0
and the phase shift is:
Trang 63Z Z
Z V
V
R C
C in
c
+
=
/1
R
R C
/
1C
in
CR j
+
=1
1
Trang 641
1
R C V
V g
Trang 662 − °
−
Trang 671
R C
Trang 69AC Circuit Analysis
Z V
C
R
Z Z
V
V
C R
R in
C j
CR j
CR
j V
CR j
Trang 70AC Circuit Analysis
C
AC Circuit Analysis
CR j
CR j
1 C R
CR V
V g
Trang 72Frequency Response (RC = 1)
)90
0
0.10.01
Angular Frequency (rad/s)
Trang 73Frequency Response
CR
1
tan2
−
−
=
2 2 2
1 C R
CR g
Trang 75AC Circuit Analysis
Lecture 4
Driving-Point Impedance
Trang 76The impedance Z of a circuit or component is defined to be the
Impedance
The impedance Z of a circuit or component is defined to be the
ratio of the voltage and current phasors:
)( j I
)
()
( j V j
AC Circuit)
( j
V
)( j I
)(
)
(
j I
j
AC Circuit)
( j
V
Impedance Z is analogous to resistance in dc circuits and its
units are ohms
When Z applies to a 2-terminal circuit (rather than simple
component) it is known as the driving-point impedance
Trang 77)( j R j jX j
Z Z
Trang 78Symbolic and Numeric Forms
CR j
R Z
+
=1Symbolic Form
Trang 79Example 1
Determine the driving-point impedance of the circuit at a
Example 1
g p pfrequency of 40 kHz:
1
Z Z
1
C j
10200
1040
2
125
9 3
+
050270
125
05027
Trang 80Example 1
89.19
25 −
= j Z
89.19
252 + 2
=
93.31
89.19
19tan 1 −
=
∠Z −
)5.38(
6720
Trang 81(5
6720
0)
93.315
6720
0159.7V
)(
Trang 82Example 2
Determine the driving-point impedance of the circuit at a
Example 2
g p pfrequency of 20 Hz:
Z Z
C
j R
Z Z
= 1
R
C j
R
Z
+/
1
CR j
+
=1
Trang 83Example 2
1 j CR
R Z
+
=
C = 100 F80
1
6
CR j
10020
2
1+ j × × × −6 ×
)0051
1(80
005
11
7939
005
11
)005
11
(
80
2 2
39 − j
=
Trang 84Example 2
00.4079
00
40tan 1⎨⎧− ⎬⎫
=
∠Z −
)245(
78800
79.39tan
7880
0
=
Trang 854256
24
−
∠
=00
4079
30
)2.45(7880
0A
0.4254
7880
042
.56
00.4079
.39(24
00.4079
.39
2 2
+
j
A3016
03
0 + j
=A
3016
03
.0
00.4079
00.4254A ∠ °
=
Trang 86Phasor Diagrams
Where voltages or currents are summed the result can be
Phasor Diagrams
grepresented by a phasor diagram: V =V1 +V2 +V3
Imaginary part
2
V
Realpart
O
1
V V
3
V
Trang 87Example 2
A3.0
Trang 881
C j
L j
L
10120
502
110
3650
L
36 mH
53.2631
.1124
10120
50
j j
j
−+
.15
24 − j
Trang 89Example 3
2215
24 −
= j Z
Example 3
22.1524
= j Z
4228
22.15
.28
15tan 1
5652
5652
042
=
Z
Trang 90Example 3
What voltage will be generated across the circuit if an ac
Example 3
What voltage will be generated across the circuit if an ac
current of 10 A, 50 Hz flows though it?
)2215
24(A
)22.1524
(A10
)4.32(
5652
0)
42.2810
5652
0V
2
=
Trang 91Example 3
C L
R V V V
R V V V
Trang 92R C
Z Z
Z
1
++
j R
1
1 ++
L j
R
Z
)/(
1
1
++
=
1 mH
L j
R C j
L j
R
)(
1+ +
+
=
L j
Trang 93Example 4
L j
R
Example 4
10400
22
j Z
×
×+
−+
=
−
10200
10)
4002
(210
200400
21
10400
2
2
6 3
2 6
1005
.11
513
22
j
j
−+
+
=
0051
26330
513
22
j j
12633
.0()513
22
(
005
12633
.0
2 2
j j
12633
0 2 + j 2
Trang 94Example 4
4742
2852
474
2852
1
474
2tan 1
=
∠Z −
)2.53(
9282
0
852
9282
0091
=
Z
Trang 95(120
474
2852
.1
A8238
9282
0091
.3
2852
.1
)474
2852
.1(
.23
9282
0A
82.38
9
0.2974
222 +
08.3126
23 +
Trang 96Example 4
Imaginary part
Example 4
I I
j
Trang 97The admittance Y of a circuit or component is defined to be
Admittance
The admittance Y of a circuit or component is defined to be
the ratio of the current and voltage phasors:
)
( j
I
1)
()
( j I j
AC Circuit)
)(
)
(
j Z j
V
j
AC Circuit)
( j
V
Admittance Y is analogous to conductance in dc circuits and
its unit is Siemens
)(
)(
)( j G j jB j
Trang 992 1
11
11
1
Y Y
Y Y
and admittances in parallel:
Oth l t i it th l Ki hh ff’ l
4 3
2
Y
Other relevant circuit theory rules are: Kirchhoff’s laws,
Thévenin and Norton's theorems, Superposition
Trang 100/1/
1
2
C j
/1/
R
C j
+
+
1 mH
Trang 101210
200400
2
3
6 j j
15027
0
10400
22
10200
2
513
22
15027
.0
22
513
2
25027
0
2 2
j j
+
−+
2
C
32.10
513
2
25027
01939
.05027
Trang 102
AC Circuit Analysis
Lecture 5
Resonant Circuits
Trang 103Resonant circuits can be characterised by two parameters:
the resonance frequency and the Q-factor
There are two basic resonant circuit configurations: series and parallel
Trang 104Resonant Circuits
L
g dt
dt
,
t
Trang 106Parallel Resonant Circuit
C
++ 1 1
1
Z Z
L j
LC R
L j
R LCR
L
LC R
L j
Trang 107Parallel Resonant Circuit
Ω
= k5
Impedance is a maximum
1when:
L j
L
j Z
1
=
LC
6 2
4
/1
L j
2
102
1+ j × × − − × − 3
10
=
Trang 108Parallel Resonant Circuit
Trang 109Parallel Resonant Circuit
L
j Z
0
R
L
j Z
j L
j
R R
L j
L
j Z
=Resonant frequency:
0
C
j L
Trang 110Parallel Resonant Circuit
−Angular frequency (rad/s)
0.0
100
)90
(2
Angular frequency (rad/s)
Trang 111=
So that:
LC R
L j
Trang 1125000
3 0
Trang 114Angular frequency (rad/s)
Trang 115100
)(
2
Trang 116Parallel Resonant Circuit
j C
j
/1
parallel resonant circuits
because the currents in
the capacitor and
j L
j L
j
pinductor cancel out
Trang 117Parallel Resonant Circuit
Trang 118Parallel Resonant Circuit
.0
R
I
10
A10
5.0
2× −3
−
Trang 119Parallel Resonant Circuit
Above resonance: 2mA
:100
.2
0.2
5
0 × −3
−
R
Trang 120Series Resonant Circuit
Z Z
Z
L
j C
j R
L C
R
1 ++
LC CR
j
C j
j
C j
2
1+
=
C j
LC CR
j
1+ −
Trang 121Series Resonant Circuit
C j
LC CR
j Z
CR
j Z
Z
Trang 122Series Resonant Circuit
LC CR
j
6
6 2
6
10
1010
4
6
1010
21
Trang 123Series Resonant Circuit
−0
Trang 124Series Resonant Circuit
The standard form for the denominator of a second-order
Series Resonant Circuit
The standard form for the denominator of a second order
system is:
2 0
2
=
So that:
LC CR
Trang 125Series Resonant Circuit
110
Trang 126Series Resonant Circuit
because the voltages
across the capacitor and
L
V
j j
R
101
2001
j C
j
j L
j
Trang 127Series Resonant Circuit
Trang 128Crystal Resonator
Trang 129Crystal Resonator
Trang 1300 0
127010
03
=
Trang 132Frequency-Response Function
Input X Y Output
)
()
( j Y j H
Frequency-response function:
)(
)
(
j X
)
(
j
H j
)
(
j
H j
X
j Y
Trang 133Frequency-Response Function
The order of a frequency-response function is the highest
Frequency Response Function
power of j in the denominator:
First order:
0
/1
1)
(
j
j H
+
=
Second order:
2 0
0 ( / )/
21
1)
(
j j
j
H
++
=Third order:
0
0 ( / )/
2
1+ j + j
1)
( j
Third order:
3 0
2 0
0 ( / ) ( / )/
1
)
(
j j
j
j
H
++
+
=The order is normally equal to (and cannot exceed) the
Trang 134Z V
V
R C
C in
j
C j
Z Z
/1
R C
j
1)
(
/1
=
+
CR j
j H
1:
where1
1
)(
Trang 135R
2 2
0 0
/1
/
1+
1)
(
+
=
= H j g
0
/
1+
Ph hift ∠H( j ) tan /Phase shift: = ∠H( j ) tan = − / 0
Trang 137dB = P
2 10
log10
2 1
10 10log
/
/log
10
dB
V
V R
2 2
l20dB
/
V
V R
V
1 10
log20
dB
V
=
Trang 138DecibelsPower ratio
Decibel
DecibelsPower ratio
60 dB
20 dB
1000000100
10 dB
20 dB100
10
6 dB
3 dB
42
0 dB-3 dB
1
-6 dB
20 dB1/4
1/2
0 01 -20 dB
-60 dB0.01
0.000001
Trang 139DecibelsVoltage ratio
Decibel
DecibelsVoltage ratio
60 dB
20 dB
100010
11/√2 = 0 7071 -3 dB
-6 dB
20 dB1/2 = 0.5
1/√2 = 0.7071
0 1 -20 dB0.1
Trang 140= −
2 0
Trang 1411+Phase shift: ∠H( j ) tan /103
Phase shift: = ∠H( j ) tan = − /103
Trang 1421000 10000 100000100
10
Trang 143Z V
V
L R
R in
R
R
L R
j
j H
L j
R
=
+
/1
1)
(
R
R L
/1
1
Trang 145Z V
V
C R
R in
c
+
=
R C
j R
Z Z
H
R C
j
)(
/1
=
+
j
CR j
j H
1:
where/
1
)(