1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

AC circuit analysis

237 469 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 237
Dung lượng 1,78 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

AC Circuit AnalysisModule: SE1EA5 Systems and Circuits AC Circuit Analysis Module: SE1EA5 Systems and Circuits Lecturer: James Grimblebyy URL: http://www.personal.rdg.ac.uk/~stsgrimb/ em

Trang 1

AC Circuit Analysis

Module: SE1EA5 Systems and Circuits

AC Circuit Analysis

Module: SE1EA5 Systems and Circuits

Lecturer: James Grimblebyy

URL: http://www.personal.rdg.ac.uk/~stsgrimb/

email: j.b.grimbleby reading.ac.ukj g y g

Recommended text book:

David Irwin and Mark Nelms

Basic Engineering Circuit Analysis (8th edition)

John Wiley and Sons (2005)

ISBN: 0-471-66158-9

Trang 2

AC Circuit Analysis

Recommended text book:

David Irwin and Mark Nelms

Basic Engineering Circuit

Trang 3

AC Circuit Analysis Syllabus

This course of lectures will extend dc circuit analysis to deal

AC Circuit Analysis Syllabus

This course of lectures will extend dc circuit analysis to deal with ac circuits

The topics that will be covered include:

AC voltages and currentsComplex representation of sinusoidsPhasors

Complex impedances of inductors and capacitorsDriving-point impedance

Frequency response of circuits – Bode plotsPower in ac circuits

Energy storage in capacitors and inductorsThree-phase power

Trang 4

AC Circuit Analysis Prerequities

AC Circuit Analysis Prerequities

You should be familiar with the following topics:

SE1EA5: Electronic Circuits

Ohm’s LawSeries and parallel resistancespVoltage and current sourcesCircuit analysis using Kirchhoff’s Lawsy gThévenin and Norton's theorems

The Superposition Theorem

SE1EC5: Engineering Mathematics

Complex numbers

Trang 5

AC Circuit Analysis

Lecture 1

AC Voltages and Currents Reactive Components

Trang 8

Examples:

Frequency

pElectrocardiogram: 1 HzMains power: 50 Hz

Aircraft power: 400 HzAudio frequencies: 20 Hz to 20 kHz

AM radio broadcasting: 0.5 MHz – 1.5 MHz

FM di b d ti 80 MH 110 MH

FM radio broadcasting: 80 MHz – 110 MHzTelevision broadcasting: 500 MHz – 800 MHzgMobile telephones: 1.8 GHz

Trang 10

Why Linear?

We shall consider the steady-state response of linear ac

Why Linear?

We shall consider the steady state response of linear ac

circuits to sinusoidal inputs

Linear circuits contain linear components such as resistors, capacitors and inductorsp

A linear component has the property that doubling the voltage across it doubles the current through it

Most circuits for processing signals are linear

Analysis of non-linear circuits is difficult and normally requires the use of a computer

Trang 11

Why Steady-State?

Steady-state means that the input waveform has been

Why Steady State?

Trang 12

Sinusoidal carrier waves are modulated to transmit

information (radio broadcasts)

Any periodic waveform can be considered to be the sum of a fundamental pure sinusoid plus harmonics (Fourier Analysis)

Trang 13

Fourier Analysis

A square waveform can be considered to consist of a

f d t l i id t th ith dd h i i id

Fourier Analysis

fundamental sinusoid together with odd harmonic sinusoids

Square wave Sum

Fundamental

3 d h i

3rd harmonic

5th harmonic

Trang 14

ft v

t

or: v(t) = v0 cos2 ft = v0 cos t

where =2 f is known as the angular frequency

t

Trang 16

Ceramic tube

Resistors

Ceramic tubecoated withConductive film

Metal end

i v

Metal end cap

Trang 17

Resistors

Trang 18

Then:

t

( )t R

Trang 19

dv C i

Cv q

Cv

ceramic

Al 0 (electrolytic)

Trang 20

Capacitors

Trang 21

Suppose that:

( )t v

dt

d C t

Trang 22

)

( 1 v0t

i

t v

0

0)

(

)(

0 2

2 = =

i t

i

t v

Thus “resistance” varies between ±∞: not a useful concept

0)

(t1

p

Trang 23

fC C

Trang 24

Magnetisablecore

Copper wire

Core: air

ferritei

Inductance L

dt

di L

ironsilicon steel

Trang 25

Inductors

Trang 26

Suppose that:

( )t v

)(t

( )

= 1 sin)

v

t

v L

Current lags voltage by /2 (90°)

Trang 27

The reactance of an inductor is directly proportional to its

value and to frequency

Trang 28

Resistance and Reactance

Trang 30

(t Ri t v t

)(

dt

t

dv C t

)

()

dt

t

dv RC t

dt

t v

t v t

RC

t v

RC

t v dt

t

=+

Trang 31

=

t v

t v

t v

t

cos)

(

cos)

(

1 0

Expanding the expression for v c:

( + )

= v t t

c

t B

t A

t v

t v

t

t B

t A

t

cossin

)(

+

=

Trang 32

B t

A t

B t

Comparing the coefficients of sin t and cos t on both sides of

t RC

t RC

t RC

t B

t

p gthe equation:

0

B RC

0

v A

RC

Solving these simultaneous linear equations in A and B:

2 2 2

0 2

2 2

0

1

RCv B

C R

v A

+

=+

=

Trang 33

AC Circuit Analysis

Thus:

2 2 2

0 1

2 2 2

0 1

1

sin1

cos

C R

v

B C

=

=

Thus:

RC C

1

At an angular frequency =1/RC:

C R

0 1

v v

)(

42

v t

⎝ 42

Trang 34

0.01/RC

Trang 35

where x is the real part, y is the imaginary part (x and y are

both real numbers), and

11

2 = − j = −

j

Complex numbers are often the solutions of real problems,

Trang 37

Complex Numbers: Polar Form

Polar form:

r z

Complex Numbers: Polar Form

where r is the magnitude, and is the angle measured from

Trang 39

Complex Numbers: Conversion

x

O

Rectangular to polar:

y z

y x

z r

Trang 40

Complex Numbers: Inversion

If the complex number is in rectangular form:

Complex Numbers: Inversion

1

jy x

z

+

=

))(

(x jy x jy

jy x

jy x

(

jy x

jy x

Trang 41

Complex Numbers: Conversion

When using the inverse tangent to obtain from x and y it is

Complex Numbers: Conversion

x

y

=tan

jy x

Trang 42

Complex Numbers: Conversion

When using the inverse tangent to obtain from x and y it is

Complex Numbers: Conversion

necessary to resolve the ambiguity of

1 Calculate using inverse tangent:

Trang 43

Complex Numbers: Conversion

Complex Numbers: Conversion

Convert to rectangular form

Trang 44

Complex Numbers: Conversion

2

1 732 z = 1+ j 3Imaginary

(3

o

=

Real axis

Trang 45

Complex Numbers: Conversion

Complex Numbers: Conversion

Convert to polar or exponential form:

j

z

+

=11

Magnitude:

2

11

1

01

2 2

12 + 2Angle:

0

1t

0t

)1

(1

44

01

1tan

1

0tan 1 1 ⎟ = − = −

Trang 46

Complex Numbers: Conversion

Real axisO

0.5O

Imaginary

)45

(4

Trang 47

Complex Exponential Voltages

We shall be using complex exponential voltages and currents

Complex Exponential Voltages

We shall be using complex exponential voltages and currents

to analyse ac circuits:

t j

Thi i th ti l t i k f bt i i th

t j

Ve t

This is a mathematical trick for obtaining the ac response

without explicitly solving the differential equations

It works because differentiating a complex exponential leaves

it unchanged apart from a multiplying factor:

t j t

j

Ve j

Ve dt

Trang 48

Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied

across a resistor:

t

t j

V

t )

(

t j

V R

t

v t

t j

Ve t

e R

V

=

R

The current through the resistor is also a complex

The current through the resistor is also a complex

exponential

Trang 49

Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied

across a capacitor:

dt

t

dv C t

t j

Ve t

t j

Ve dt

d C

dt

=

j

Ve t

CVe j

dt

=

C

The current through the capacitor is also a complex

The current through the capacitor is also a complex

exponential

Trang 50

Complex Exponential Voltages

S th t l ti l lt i li d

Complex Exponential Voltages

Suppose that a complex exponential voltage is applied

across an inductor:

dt t

v L

t

t j

Ve t

t

j dt

Ve L

Ve L

The current through the inductor is also a complex

exponential

Trang 51

Complex Exponential Voltages

A complex exponential input to a linear ac circuits results in all voltages and currents being complex exponentials

Of course real voltages are not complex

The real voltages and currents in the circuit are simply the real parts of the complex exponentials

Complex exponential: v (t) = e j t (= cos t + j sin t)

Complex exponential:

Real voltage:

)sin

cos(

)

t t

Real voltage: v r (t) = cos t

Trang 52

AC Circuit Analysis

Lecture 3

Phasors Impedances Gain and Phase Shift Frequency Response

Trang 53

then all other voltages and currents are also complex

exponentials:

t j t

j j

t j

t j t

j j

t

j c

I i

i t

i

e V e

e v e

v t

v

) (

1 1

)

( 1 1

2 2

1 1

)(

j j

1 v e j

j

e v V

=

=

Trang 54

Phasors are independent of time, but in general are functions

of j and should be written:

Trang 55

The impedance Z of a circuit or component is defined to be the

Impedance

The impedance Z of a circuit or component is defined to be the

ratio of the voltage and current phasors:

t j

Ve t

RIe Ve

t Ri t

v

t j t

j

c c

=

)()

Trang 56

d C Ie

dt

C t

i

t j t

Ie t

CVe j

Ie

Ve dt

C Ie

t j t

j

t j t

I

CVe j

I V

Trang 57

d L Ve

dt

L t

v

t j t

Ie t

LIe j

Ve

Ie dt

L Ve

t j t

j

t j t

V

LIe j

V

Trang 59

1

++

+

=Other rele ant circ it theor r les are Kirchhoff’s la s

4 3

2

Z

Other relevant circuit theory rules are: Kirchhoff’s laws,

Thévenin and Norton's theorems, Superposition

Trang 60

Potential divider:

2 1

IZ V

Z Z

IZ V

2

2 1

Z V

Z Z

2

Z Z

Z V

Trang 61

AC Circuit Analysis

Suppose that a circuit has an input x(t) and an output y(t),

AC Circuit Analysis

where x and y can be voltages or currents

The corresponding phasors are X(j ) and Y(j )

The real input voltage x(t) is a sinusoid of amplitude x0:

)(

)(

)cos(

)(t x t re x e j t re Xe j t x

and the real output voltage y(t) is the real part of the complex

)(

)(

)cos(

)(t x0 t re x0e j t re Xe j t

and the real output voltage y(t) is the real part of the complex

exponential output:

)(

)(

)cos(

)(t y0 t re y0e j e j t re Ye j t

Trang 62

=

0 0

The voltage gain g is the ratio of the output amplitude to the

y

0 0

and the phase shift is:

Trang 63

Z Z

Z V

V

R C

C in

c

+

=

/1

R

R C

/

1C

in

CR j

+

=1

1

Trang 64

1

1

R C V

V g

Trang 66

2 − °

Trang 67

1

R C

Trang 69

AC Circuit Analysis

Z V

C

R

Z Z

V

V

C R

R in

C j

CR j

CR

j V

CR j

Trang 70

AC Circuit Analysis

C

AC Circuit Analysis

CR j

CR j

1 C R

CR V

V g

Trang 72

Frequency Response (RC = 1)

)90

0

0.10.01

Angular Frequency (rad/s)

Trang 73

Frequency Response

CR

1

tan2

=

2 2 2

1 C R

CR g

Trang 75

AC Circuit Analysis

Lecture 4

Driving-Point Impedance

Trang 76

The impedance Z of a circuit or component is defined to be the

Impedance

The impedance Z of a circuit or component is defined to be the

ratio of the voltage and current phasors:

)( j I

)

()

( j V j

AC Circuit)

( j

V

)( j I

)(

)

(

j I

j

AC Circuit)

( j

V

Impedance Z is analogous to resistance in dc circuits and its

units are ohms

When Z applies to a 2-terminal circuit (rather than simple

component) it is known as the driving-point impedance

Trang 77

)( j R j jX j

Z Z

Trang 78

Symbolic and Numeric Forms

CR j

R Z

+

=1Symbolic Form

Trang 79

Example 1

Determine the driving-point impedance of the circuit at a

Example 1

g p pfrequency of 40 kHz:

1

Z Z

1

C j

10200

1040

2

125

9 3

+

050270

125

05027

Trang 80

Example 1

89.19

25 −

= j Z

89.19

252 + 2

=

93.31

89.19

19tan 1 −

=

Z

)5.38(

6720

Trang 81

(5

6720

0)

93.315

6720

0159.7V

)(

Trang 82

Example 2

Determine the driving-point impedance of the circuit at a

Example 2

g p pfrequency of 20 Hz:

Z Z

C

j R

Z Z

= 1

R

C j

R

Z

+/

1

CR j

+

=1

Trang 83

Example 2

1 j CR

R Z

+

=

C = 100 F80

1

6

CR j

10020

2

1+ j × × × −6 ×

)0051

1(80

005

11

7939

005

11

)005

11

(

80

2 2

39 − j

=

Trang 84

Example 2

00.4079

00

40tan 1⎨⎧− ⎬⎫

=

Z

)245(

78800

79.39tan

7880

0

=

Trang 85

4256

24

=00

4079

30

)2.45(7880

0A

0.4254

7880

042

.56

00.4079

.39(24

00.4079

.39

2 2

+

j

A3016

03

0 + j

=A

3016

03

.0

00.4079

00.4254A ∠ °

=

Trang 86

Phasor Diagrams

Where voltages or currents are summed the result can be

Phasor Diagrams

grepresented by a phasor diagram: V =V1 +V2 +V3

Imaginary part

2

V

Realpart

O

1

V V

3

V

Trang 87

Example 2

A3.0

Trang 88

1

C j

L j

L

10120

502

110

3650

L

36 mH

53.2631

.1124

10120

50

j j

j

−+

.15

24 − j

Trang 89

Example 3

2215

24 −

= j Z

Example 3

22.1524

= j Z

4228

22.15

.28

15tan 1

5652

5652

042

=

Z

Trang 90

Example 3

What voltage will be generated across the circuit if an ac

Example 3

What voltage will be generated across the circuit if an ac

current of 10 A, 50 Hz flows though it?

)2215

24(A

)22.1524

(A10

)4.32(

5652

0)

42.2810

5652

0V

2

=

Trang 91

Example 3

C L

R V V V

R V V V

Trang 92

R C

Z Z

Z

1

++

j R

1

1 ++

L j

R

Z

)/(

1

1

++

=

1 mH

L j

R C j

L j

R

)(

1+ +

+

=

L j

Trang 93

Example 4

L j

R

Example 4

10400

22

j Z

×

×+

−+

=

10200

10)

4002

(210

200400

21

10400

2

2

6 3

2 6

1005

.11

513

22

j

j

−+

+

=

0051

26330

513

22

j j

12633

.0()513

22

(

005

12633

.0

2 2

j j

12633

0 2 + j 2

Trang 94

Example 4

4742

2852

474

2852

1

474

2tan 1

=

Z

)2.53(

9282

0

852

9282

0091

=

Z

Trang 95

(120

474

2852

.1

A8238

9282

0091

.3

2852

.1

)474

2852

.1(

.23

9282

0A

82.38

9

0.2974

222 +

08.3126

23 +

Trang 96

Example 4

Imaginary part

Example 4

I I

j

Trang 97

The admittance Y of a circuit or component is defined to be

Admittance

The admittance Y of a circuit or component is defined to be

the ratio of the current and voltage phasors:

)

( j

I

1)

()

( j I j

AC Circuit)

)(

)

(

j Z j

V

j

AC Circuit)

( j

V

Admittance Y is analogous to conductance in dc circuits and

its unit is Siemens

)(

)(

)( j G j jB j

Trang 99

2 1

11

11

1

Y Y

Y Y

and admittances in parallel:

Oth l t i it th l Ki hh ff’ l

4 3

2

Y

Other relevant circuit theory rules are: Kirchhoff’s laws,

Thévenin and Norton's theorems, Superposition

Trang 100

/1/

1

2

C j

/1/

R

C j

+

+

1 mH

Trang 101

210

200400

2

3

6 j j

15027

0

10400

22

10200

2

513

22

15027

.0

22

513

2

25027

0

2 2

j j

+

−+

2

C

32.10

513

2

25027

01939

.05027

Trang 102

AC Circuit Analysis

Lecture 5

Resonant Circuits

Trang 103

Resonant circuits can be characterised by two parameters:

the resonance frequency and the Q-factor

There are two basic resonant circuit configurations: series and parallel

Trang 104

Resonant Circuits

L

g dt

dt

,

t

Trang 106

Parallel Resonant Circuit

C

++ 1 1

1

Z Z

L j

LC R

L j

R LCR

L

LC R

L j

Trang 107

Parallel Resonant Circuit

Ω

= k5

Impedance is a maximum

1when:

L j

L

j Z

1

=

LC

6 2

4

/1

L j

2

102

1+ j × × − − × − 3

10

=

Trang 108

Parallel Resonant Circuit

Trang 109

Parallel Resonant Circuit

L

j Z

0

R

L

j Z

j L

j

R R

L j

L

j Z

=Resonant frequency:

0

C

j L

Trang 110

Parallel Resonant Circuit

−Angular frequency (rad/s)

0.0

100

)90

(2

Angular frequency (rad/s)

Trang 111

=

So that:

LC R

L j

Trang 112

5000

3 0

Trang 114

Angular frequency (rad/s)

Trang 115

100

)(

2

Trang 116

Parallel Resonant Circuit

j C

j

/1

parallel resonant circuits

because the currents in

the capacitor and

j L

j L

j

pinductor cancel out

Trang 117

Parallel Resonant Circuit

Trang 118

Parallel Resonant Circuit

.0

R

I

10

A10

5.0

2× −3

Trang 119

Parallel Resonant Circuit

Above resonance: 2mA

:100

.2

0.2

5

0 × −3

R

Trang 120

Series Resonant Circuit

Z Z

Z

L

j C

j R

L C

R

1 ++

LC CR

j

C j

j

C j

2

1+

=

C j

LC CR

j

1+ −

Trang 121

Series Resonant Circuit

C j

LC CR

j Z

CR

j Z

Z

Trang 122

Series Resonant Circuit

LC CR

j

6

6 2

6

10

1010

4

6

1010

21

Trang 123

Series Resonant Circuit

−0

Trang 124

Series Resonant Circuit

The standard form for the denominator of a second-order

Series Resonant Circuit

The standard form for the denominator of a second order

system is:

2 0

2

=

So that:

LC CR

Trang 125

Series Resonant Circuit

110

Trang 126

Series Resonant Circuit

because the voltages

across the capacitor and

L

V

j j

R

101

2001

j C

j

j L

j

Trang 127

Series Resonant Circuit

Trang 128

Crystal Resonator

Trang 129

Crystal Resonator

Trang 130

0 0

127010

03

=

Trang 132

Frequency-Response Function

Input X Y Output

)

()

( j Y j H

Frequency-response function:

)(

)

(

j X

)

(

j

H j

)

(

j

H j

X

j Y

Trang 133

Frequency-Response Function

The order of a frequency-response function is the highest

Frequency Response Function

power of j in the denominator:

First order:

0

/1

1)

(

j

j H

+

=

Second order:

2 0

0 ( / )/

21

1)

(

j j

j

H

++

=Third order:

0

0 ( / )/

2

1+ j + j

1)

( j

Third order:

3 0

2 0

0 ( / ) ( / )/

1

)

(

j j

j

j

H

++

+

=The order is normally equal to (and cannot exceed) the

Trang 134

Z V

V

R C

C in

j

C j

Z Z

/1

R C

j

1)

(

/1

=

+

CR j

j H

1:

where1

1

)(

Trang 135

R

2 2

0 0

/1

/

1+

1)

(

+

=

= H j g

0

/

1+

Ph hift ∠H( j ) tan /Phase shift: = ∠H( j ) tan = − / 0

Trang 137

dB = P

2 10

log10

2 1

10 10log

/

/log

10

dB

V

V R

2 2

l20dB

/

V

V R

V

1 10

log20

dB

V

=

Trang 138

DecibelsPower ratio

Decibel

DecibelsPower ratio

60 dB

20 dB

1000000100

10 dB

20 dB100

10

6 dB

3 dB

42

0 dB-3 dB

1

-6 dB

20 dB1/4

1/2

0 01 -20 dB

-60 dB0.01

0.000001

Trang 139

DecibelsVoltage ratio

Decibel

DecibelsVoltage ratio

60 dB

20 dB

100010

11/√2 = 0 7071 -3 dB

-6 dB

20 dB1/2 = 0.5

1/√2 = 0.7071

0 1 -20 dB0.1

Trang 140

= −

2 0

Trang 141

1+Phase shift: ∠H( j ) tan /103

Phase shift: = ∠H( j ) tan = − /103

Trang 142

1000 10000 100000100

10

Trang 143

Z V

V

L R

R in

R

R

L R

j

j H

L j

R

=

+

/1

1)

(

R

R L

/1

1

Trang 145

Z V

V

C R

R in

c

+

=

R C

j R

Z Z

H

R C

j

)(

/1

=

+

j

CR j

j H

1:

where/

1

)(

Ngày đăng: 05/03/2016, 14:06

TỪ KHÓA LIÊN QUAN