Machining Characteristics of Hard Materials Kazuo Nakayama l, Minoru Arai and Torahiko Kanda; Yokohama National University /Japan Received on January 13,1988 ABSTRACT: The hardening o
Trang 1Machining Characteristics of Hard Materials
Kazuo Nakayama (l), Minoru Arai and Torahiko Kanda; Yokohama National University /Japan
Received on January 13,1988
ABSTRACT:
The hardening of steel rather lowers the cutting forces in many cases This is the result
of high shear angle and the saw-toothed chip formation due to the poor ductility of hard
materials ReinforceinenL of A1 alloy with fiber also decreases the cutting forces However,
the hard materials wear the cutting tool rapidly and increase the forces, especially thrust
the profile of cutting edge
deformation
1 Introduction
The development and improvement of poly-crystalline
and ceramic tool materials have been expanding the
application of these tools for the machining of
hard materials such as hardened steel and ceramics/l/
shop, the shift from grinding to cutting has become
one of the main targets in these days
From the viewpoint of machining, hard materials
are characterized by the following properties:
a) High indentation hardness: This requires the
cutting tool of much higher hardness (usually more
than three times as hard) This also causes strong
impact and stress on the small area of tool-work
contact at the engage of cutting tool with workpiece
b) High abrasiveness: This requires the cutting
tool having high resistance against the abrasive
wear
c) LOW ductility: This causes the formation of saw-
toothed chip instead of continuous chip, or even
discrete elemental chips In such cases, chip is
produced after small plastic deformation Accordingly,
the power consumption and cutting forces are relative-
ly low
This induces an appreciable amount of local elastic
recovery after the cutting tool passes over The
size error due to this fact becomes serious for
the finishing of hard materials
On the other hand, the cutting conditions in the
characterized by the following points:
a) Thin undeformed chip thickness: In order to mini-
mize the tool wear and size error, fairly small
values of the depth of cut and feed rate are taken
Large corner radius of cutting tool is also selected
As the result, the undeformed chip thickness is
very thin, especially in the region of machined sur-
face generation
b) Negative rake angle: For the prevention of the
chipping of cutting edge, negative rake angle and
chamfering are necessary for the cutting tool to
very thin, actual cutting is done only at the chamfer
in most cases Furthermore, the abrasivenessof work
material blunts the cutting edge very easily and
makes the actual rake angle more negative
f a ) Continuous c h i p ( b ) S a w - t o o t h e d > h i p '
format ion f o r ma % i o n
;'1<.1 I'odels of chip formation
In these many points, the machining of hard materials
Many of our knowledge and theoretical works on the conventional machining cannot be applied For the
must be examined basically
hard materials (mostly hardened steel) are studied basically in contrast with that of soft and ductile materials
In the machining of ductile materials, the chip formation is accompanied with very severe plastic deformation at the shear zone, as shown in Fig.l(a) When a work material has not enough ductility, how- ever, the deformation is limited by the crack initi- ation at the surface where no hydrostatic pressure exists, Fi l(b) This was observed in the machining
and the chip thus produced was named "saw-toothed chip" from the shape of its cross-section
but its formation has been attributed to the adiabtic shear which happens intermittently in the high speed machining of metals having poor thermal conductivity such as Ti alloy and austenitic stainless steel These two types of chip together with the "wavy shear type) chip" may be collectively called
produced in the machining of more brittle materials such as gray cast iron and ceramics
The saw-toothed chip was shown to be produced when the shear strain on the surface attain an ultimate value yc over which the work material cannot afford
in the prscess to reach there is
From the geometrical relation in the figure, the inclination of crack $c is expressed by
the shear angle theories based on the cutting model
of continuous chip formation
-
.'i.q.2 C r a c k initiation in the fornation of saw-toothed chip
Trang 2Fig.3 shows t h e scheme o f t h e c r o s s - s e c t i o n o f c h i p s
produced i n t h e m a c h i n i n g o f h a r d e n e d b e a r i n g s t e e l
(HV760) w i t h t h e c u t t i n g t o o l s o f t h r e e d i f f e r e n t
r a k e a n g l e s , - 1 0 ' -30' and -50' Under t h e c u t t i n g
c o n d i t i o n s i n d i c a t e d below t h e f i g u r e , o n l y t h e
rounded c o r n e r o f t o o l was i n a c t i o n The i n c l i n a t i o n
o f c r a c k a g a i n s t t h e c u t t i n g d i r e c t i o n , + , was
measured a n d i n d i c a t e d i n t h e f i g u r e I t 'can b e
s e e n t h a t , i n s p i t e o f wide v a r i a t i o n o f r a k e a n g l e ,
0 i s almost c o n s t a n t ( a b o u t 3 0 " ) T h i s r e s u l t s u p p o r t s
t%e a b o v e r e l a t i o n E q ( 2 )
S i n c e t h e s e c h i p s had n o n - u n i f o r m c r o s s - s e c t i o n ,
r e a s o n a b l e measurement o f t h e i r t h i c k n e s s was n o t
p o s s i b l e Then, t h e mean v a l u e o f c h i p t h i c k n e s s
r a t i o C h was s u b s t i t u t e d by t h e c h i p l e n g t h r a t i o
( c h i p l e n g t h / l e n g t h o f c u t ) , which is a l s o i n d i c a t e d
i n t h e f i g u r e I t is t o b e n o t i c e d t h a t a l l o f t h e s e
c h i p s i n d i c a t e v e r y l a r g e v a l u e o f C over 1 0 , where-
a s , i n t h e u s u a l m a c h i n i n g o f Actile m e t a l s Ch
i s less t h a n 0 5 e v e n w i t h p o s i t i v e r a k e t o o l s
c u t t i n g r a t i o C h = l 3 1 Ch.1 .A0 Ch=l 5 6
-
-1g.3 C r o s s - s e c t i o n s of c h i p s p r o d u c e d i p t h e m a c h i n i r r
of h a r d e n e d s t e e l
Work material: B e a r i n g s t e e l S U J 2 (HV760)
Tool: C e r a m i c , rc=0.8 m m , r a k e a n g l e = v a r i e d
a 0 3 m m f = 0 1 r , m / r e v , V.60 m/min
3 C u t t i n g forces
C u t t i n g f o r c e s i n t h e m a c h i n i n g o f h a r d m a t e r i a l s
a r e , i n s p i t e o f t h e i r h a r d n e s s , n o t n e c e s s a r i l y
h i g h b e c a u s e o f t h e f o l l o w i n g two e f f e c t s :
a ) R e l a t i v e l y s m a l l p l a s t i c d e f o r m a t i o n o f c h i p
due t o t h e c r a c k f o r m a t i o n m e n t i o n e d a b o v e
b ) R e l a t i v e l y s m a l l a r e a o f t o o l - c h i p c o n t a c t which
r e d u c e s t h e f r i c t i o n f o r c e
I n p r a c t i c e , however, t h e h a r d m a t e r i a l s wear down
t h e c u t t i n g t o o l r a p i d l y and i n c r e a s e t h e c u t t i n g
f o r c e s , e s p e c i a l l y t h r u s t f o r c e , a s i s shown l a t e r
The c u t t i n g t e s t o f 0.25% C s t e e l s o f f o u r d i f f e r e n t
h e a t t r e a t m e n t s , Fig.4, i n d i c a t e s t h a t , when -20'
r a k e t o o l i s u s e d , t h e i n c r e a s e o f w o r k p i e c e h a r d n e s s
d e c r e a s e s b o t h c u t t i n g and t h r u s t f o r c e s When 0'
r a k e t o o l i s u s e d , on t h e o t h e r h a n d , t h e f o r c e s
a r e a l m o s t i n d e p e n d e n t o f t h e h a r d n e s s
8
1.5
z 1D
*
0
0
a.
t
I=
0.5
0 A : c u t t i n g f o r c e
X o r k p i e c e h a r d n e s s , HV W o r k p i e c e h a r d n e s s H'J
F i g 4 E f f e c t s of v o r k p i e c e h a r d n e s s
Work m a t e r i a l : 0.25SC s t e e l h e a t t r e a t m e n t v a r i e d
Tool: H S S , r a k e a n g l e v a r i e d
C u t t i n g s p e e d : 20 m/min, Width of c u t : 2 0 ':m
Depth o f c u t : 0 1 5 mm(orthgona1 c u t t i n g )
C u t t i n g f l u i d : n o n e
I n ( b ) and ( c ) o f F i g 4 , t h e s h e a r a n g l e s h e a r
s t r a i n o f c h i p y c , a n d t h e s h e a r s t r e s s on s h e a r p l a i n
T~ c a l c u l a t e d u s i n g t h e s e f o r c e s and t h e c h i p t h i c k -
n e s s measured a r e shown The i n c r e a s e o f h a r d n e s s
i s s e e n t o i n c r e a s e b o t h 0 and T S These v a r i a t i o n s
o f 6 and T~ g i v e o p p o s i t e e f f e c t s on t h e c u t t i n g
f o r c e s These two were a l m o s t b a l a n c e d i n t h e c a s e
o f 0 " r a k e t o o l , w h e r e a s t h e e f f e c t o f 0 s u r p a s s e d
t h a t o f T~ and d e c r e a s e d t h e f o r c e s
S i m i l a r t e s t on 0.45% C s t e e l o f v a r i o u s h a r d n e s s
up t o HV540 i n d i c a t e d t h e d e c r e a s e o f c u t t i n g f o r c e s
w i t h t h e i n c r e a s e o f h a r d n e s s e v e n i n t h e c a s e o f 0' r a k e t m l
When a n n e a l e d s t e e l was work-hardened by c o l d f o r g i n g ,
s h e a r a n g l e i n c r e a s e d and c u t t i n g f o r c e s d e c r e a s e d
I t was a l s o found t h a t , i n t h e c u t t i n g t e s t o f f i b e r
r e i n f o r c e d m e t a l (FRM), t h e r e i n f o r c e m e n t o f A 1
a l l o y w i t h v a r i o u s c o n t e n t s o f f i b e r s ( S i c w h i s k e r and A 1 2 0 3 f i b e r ) l o w e r e d t h e c u t t i n g f o r c e s c o n s i d e r -
a b l y a s shown i n =
E
F i 2 5 O r t h o r o n a l c u t t i n , : 01' rti';
T o o l : HSS y = 5 O , V=2 m/min h 0 1 VP' Work m a t e r i a l s : F i b e r r e i n f o r c e d A ? : a l l ) ; '
shows t h e e f f e c t s of r a k e a n g l e on t h e c u t t i n g
f o r c e s i n t h e l i g h t c u t t i n g o f b e a r i n g s t e e l s o f two d i f f e r e n t h e a t t r e a t m e n t s T r i a n g u l a r (Al2O3+
T i c ) t y p e r p r a m i c i n s e r t s w i t h 0.8mm c o r n e r r a d i u s were ground t o g i v e t h e f i v e d i f f e r e n t n e g a t i v e
r a k e a n g l e s t o t h e rounded c o r n e r s I n t h e f i g u r e , 'the f e e d f o r c e i s n o t shown b e c a u s e i t was v e r y
s m a l l i n c o m p a r i s o n w i t h c u t t i n g a n d t h r u s t f o r c e s
F o l l o w i n g a r e known from t h i s f i g u r e :
a ) I n t h e m a c h i n i n g o f h a r d e n e d s t e e l ( H V 7 6 0 ) l a r g e r
n e g a t i v e r a k e a n g l e i n c r e a s e s t h e c u t t i n g f o r c e
F, o n l y a l i t t l e , w h e r e a s i n c r e a s e s t h e t h r u s t f o r c e
FP r e m a r k a b l y T h i s c a n b e a t t r i b u t e d t o t h e forma-
t i o n o f s a w - t o o t h e d c h i p by t h e h i g h n e g a t i v e r a k e
a n g l e I n t h e m a c h i n i n g of a n n e a l e d s t e e l ( H V 2 2 0 )
on t h e o t h e r h a n d , b o t h f o r c e s i n c r e a s e w i t h t h e
i n c r e a s e o f n e g a t i v e r a k e a n g l e
l a k n r k D i e c e 1
0
Rake a n g l e y
Fiz.6 E f f e c t o f n e g a t i v e r a k e a n g l e o n
c u t t i n g f o r c e s
C u t , t i n g c o n d i t i o n s a r e t h e same a s i n Fit: ?
Qxcept f o r a = 0 1 m m
Trang 3b ) The f o r c e r a t i o F / F y i n d i c a t e d i n F i g 6 shows
v e r y h i g h v a l u e T h f s 1s r e m a r k a b l e e s p e c i a l l y i n
t h e m a c h i n i n g o f HV760 s t e e l w i t h h i g h n e g a t i v e
r a k e t o o l , which i s t h e c a s e i n t h e p r a c t i c a l machin-
i n g o f h a r d e n e d s t e e l
4 E f f e c t s o f t o o l w e a r
4 1 C u t t i n g f o r c e s
D u r i n g t h e m a c h i n i n g o f h a r d m a t e r i a l s , t h e h i g h
a b r a s i v e n e s s and h i g h c u t t i n g t e m p e r a t u r e c a u s e
t h e r a p i d t o o l w e a r , a n d t h e worn f l a n k t o g e t h e r
w i t h t h e b l u n t c u t t i n g e d g e r a i s e s t h e c u t t i n g f o r c e s ,
e s p e c i a l l y t h r u s t f o r c e T h i s a c c e l e r a t e s f u r t h e n
wear
F19.7 i s t h e t e s t r e s u l t on t h e v a r i a t i o n o f c u t t i n g
f o r c e s w i t h t h e i n c r e a s e o f a r t i f i c i a l l y made f l a n k
wear: I n t h e m a c h i n i n g o f h a r d e n e d s t e e l ( H V 7 2 0 )
c o n s i d e r a b l e i n c r e a s e i n t h r u s t f o r c e F i s n o t i c e d ,
w h e r e a s t h e i n c r e a s e i n c u t t i n g f o r & Fv i s n o t
so much I n t h e c a s e of n o r m a l i z e d s t e e l ( H V 2 2 0 )
, + A ] G 6 $
I
k l i d t h o f f l a n k wear land V B m m
t'ie.7 Increase of c u t t i n g f o r c e s with
t h e width of f l a n k wear land
Tool: ceramic(A120-,+TiC), y =-35' yc=0.8nm
V=60m/nin f o r HV760 s t e e l
120mImin f o r ~ ~ 2 2 0 s t e e l
a=O.lmm, f=O.lmn/rev
however, o n l y a l i t t l e i n c r e a s e is s e e n i n b o t h
f o r c e s
The c h i p t h i c k n e s s r a t i o was n o t changed by f l a n k
wear a s shown i n t h e f i g u r e T h i s means t h a t t h e
f o r c e i n c r e m e n t s c a n b e c o n s i d e r e d t o a c t on t h e
worn f l a n k Then, t h e normal a n d t a n g e n t i a l stresses
on t h e worn f l a n k c a n b e c a l c u l a t e d from t h i s k i n d
o f t e s t I n w, some o f t h e r e s u l t s t h u s o b t a i n e d
on s e v e r a l work m a t e r i a l s a r e shown i n r e l a t i o n
t o t h e i r h a r d n e s s
The c o e f f i c i e n t o f f r i c t i o n a t t h e worn f l a n k P '
( = F ' / F ' ) o b t a i n e d from t h e s e t e s t s a r e shown i n
Fig.9, which i n d i c a t e s t h a t t h e n o r m a l i z e d s t e e l
h a s t h e a d h e s i v e n a t u r e o f f r i c t i o n w i t h h i g h P '
( a b o u t 0 7 ) w h e r e a s t h e h a r d m a t e r i a l s have l o w
," 2 -
T 0 T i a l l o y ( b A 1 - 4 V )
C
-m
800
Workpiece hardness HV Fig.8 Relation between workpiece hardness HV
and the normal and t a n g e n t i a l s t r e s s e s
on flank wear land of and i f
T o o l : P20 f o r T i a l l o y , t r i a n g u l a r tip(rc=0.8mm)
P C D f o r ceramics, c i r c u l a r tip(b=13mm)
Ceramic f o r s t e e l s , t r i a n g u l a r t i p ( r - 0 8 m m )
C u t t i n p ( conditions a r e t h e same a s i n Fig.?-
except f o r t o o l
W
c 0.a
rl
fi
0
s C
,-I
c
C
C
m
m
2 0.4
c
0 A
h
c
c 0
*
m
.i
0
rl
%A
c m
I
ceramic:
Workpiece hardness H V Fig.9 E f f e c t of workpiece hardness H V on
t h e c o e f f i c i e n t o f the f r i c t i o n o n
f l a n k wear l a n d
C u t t i n g conditions a r e the same as i n FiC.8
~'(0.2-0.3) T h i s c a u s e s t h e h i g h t h r u s t f o r c e r e l a -
t i v e t o t h e c u t t i n g f o r c e i n t h e m a c h i n i n g o f h a r d
m a t e r i a l s w i t h worn t o o l The i n c r e a s e d t h r u s t f o r c e due t o f l a n k wear c a n
b e d i m i n i s h e d t o some e x t e n t by h e e l i n g t h e c u t t i n g
t o o l so a s t o i n c r e a s e t h e r e l i e f a n g l e Though
t h i s makes t h e r a k e a n g l e more n e g a t i v e , t h e t e s t shown i n F i g 1 0 i n d i c a t e s t h e a p p a r e n t d e c r e a s e i n
t h r u s t f o r c e and p r a c t i c a l l y no c h a n g e i n c u t t i n g
f o r c e : When VB = O.Zmm,about 30% d e c r e a s e i n t h r u s t
f o r c e i s o b t a i n e d by t i l t i n g t h e c u t t i n g t o o l by
8 "
4.2 S u r f a c e f i n i s h
I n t h e m a c h i n i n g of h a r d m a t e r i a l s , BUE i s h a r d l y formed b e c a u s e o f t h e i r p o o r d u c t i l i t y a n d h i g h
c u t t i n g t e m p e r a t u r e A s t h e r e s u l t , t h e p r o f i l e
300
-z
P
4
k 200
>
a
0
h
0
_I
Width o f f l a n k wear land VB m m Fig.10 Decrease of c u t t i n g f o r c e s by heeling
C u t t i n g conditions a r e t h e same as i n Fig.7 worn tool
o f c u t t i n g e d g e i s t r a n s f e r r e d t o t h e machined sur-
f a c e w i t h r e a s o n a b l e a c c u r a c y Then, a s l o n g a s
t h e f l a n k wear i s u n i f o r m , i t d o e s n o t i n c r e a s e
t h e s u r f a c e r o u g h n e s s With t h e p r o g r e s s o f f l a n k
w e a r , however, c u t t i n g e d g e t e n d s t o g e t r o u g h , and d e t e r i o r a t e s t h e s u r f a c e F i g 1 1 i s a n example showing t h a t t h e u n i f o r m f l a n k wear u p t o 0.15mm
d o e s n o t m a t t e r from t h e s t a n d p o i n t o f s u r f a c e f i n i s h 4.3 S i z e e r r o r d u e t o t h r u s t f o r c e
L a r g e t h r u s t f o r c e i n t h e m a c h i n i n g o f h a r d m a t e r i a l s shown a b o v e c a u s e s t h e d i m e n s i o n a l e r r o r o f f i n i s h e d
p a r t due t o t h e f o l l o w i n g t w o t y p e s of e l a s t i c deform-
a t i o n :
1 ) E l a s t i c d e f o r m a t i o n o f w o r k p i e c e - c u t t i n g t o o l - machine t o o l s y s t e m T h i s c a n b e m i n i m i z e d s i m p l y
by i n c r e a s i n g t h e r i g i d i t y o f t h e s y s t e m a n d d e c r e a s -
i n g t h e t h r u s t f o r c e
Trang 4L -
e
2
x 3 -
e
D:
m
111
m
!
2
! T h e o r e t i c a l f 1 / 8 r E
W i d t h o f f l a n k n e a r l a n d v B mm
F i g 1 1 E f f e c t o f w i d t h o f f l a n k w e a r O n
t h e s u r f a c e r o u g h n e s s Rmax
C u t t i n i : c o r l d i t i o n s a r e t h e s a m e a s i n F ~ I : ~
2) Local elastic deformation in the region near
Since hard materials are characterized by the high
ratio of (Hardness/E-Modulus) as shown in Fig.13,
high stress at the tool-workpiece contact causes
similar problem in grinding/4/ is applied to cutting,
this local elastic deformation can be minimized
by
b ) increasing the shear angle @ and
c ) decreasing the contact length at flank, VB
5 Conclusions
1) Cutting forces in the machining of hard materials
are not necessarily high compared with that of soft
materials: High shear angle and the formation of
sow-toothed chip due to poor ductility lower the
forces in spite of the high strength of hard materi-
als
temperature in the machining of hard materials raise
the cutting forces, especially thrust force
3 ) The profile of machined surface of hardened steel
reflects that of cutting tool with reasonable accura-
cy: As long as the tool profile is kept smooth,
the tool wear to some extent does not deteriorate
the surface finish
4 ) Since hard materials have high ratio of (Hardness/
E-Modulus), the elastic deformation due to thrust
force causes appreciable amount of dimensional error
The authors wish to thank Mr.Takashi Nakano of Nippon Kokan K.K for carrying out a part of experimental work when he was in Yokohama National University
References
/ I /
/2/
/3/
/4/
/ 5 /
/6/
CIRP, 33/2 : 4 17-4 27
188
Titanium Alloys, Wear, 76:15-34
Nakayama,K., 1971, Elastic Deformation of Con-
Precision Eng 4:93-98
Nakayama.K., 1974, The Formation of Satv-toothed
Tokyo, 572-577
Nakayama,K., Taka9i.J Nakan0.T 1974, Peculi-
of the CIRP, 23/1:89-90
F i g 1 2 f:odel o f e l a s t i c d e f o r m a t i o n i n c u t t i n g r e g i o n
1 0 0
D i a m o n d 11
1 0
a
c5
Lo
111
W
C
a h
m
" 1
0 1
E - m o d u l u s GPO
Fir! 1 3 R e l a t i o n b e t w e e n h r i r d n e s s a n d R - m o d u l l l : :