1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Discrete Controller Design

33 280 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 0,96 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Discrete Controller Design Thanh Vo-Duy Department of Industrial Automation thanh.voduy@hust.edu.vn... Prior to LectureDiscrete-time System with analog reference input Discrete-time Syst

Trang 1

Discrete Controller

Design

Thanh Vo-Duy Department of Industrial Automation

thanh.voduy@hust.edu.vn

Trang 3

Prior to Lecture

Discrete-time System with analog reference input

Discrete-time System with digital reference input

Trang 4

Digital Controllers

• Consider the Discrete-time System as

• 𝑅 𝑧 - Reference Input

• 𝐸 𝑧 - Error signal

• 𝑈 𝑧 - Output of the Controller

• 𝑌 𝑧 - Output of the System

• 𝐻𝐺 𝑧 - Digitized plant with Zero-order hold

Trang 6

Digital Controllers

Dead-Beat Controller

• Dead-Beat Controller: brings system to steady state

in the smallest number of time steps

Trang 8

1 − 𝑧−𝑘

Trang 11

1 − 𝑧−1 1 − 𝑒−

𝑇

𝑞 𝑧−1

Trang 12

1 − 𝑧 −1 1 − 𝑒−

𝑇

𝑞 𝑧 −1

1 − 𝑧−11

→ 𝑇 𝑧 = 𝑧

−𝑘−1 1 − 𝑒−

𝑇 𝑞

Trang 13

Design a Dahlin digital controller for the system

(let’s choose 𝑞 = 10note: 𝑒−0.1 = 0.904)

Trang 16

Digital Controllers

Dahlin Controller

• Solution (cont.)

Trang 17

• Use Time Shifting property of z-Transform

Trang 21

Digital Controllers

PID Controller

• PID – Proportional – Integral – Derivative controller

• Proportional - 𝐾𝑝 (or 𝑃): error is multiplied by 𝐾𝑝

• High 𝐾𝑝 causes instability, Low gain causes drifting away

• Integral - 𝐾𝑖 (or 𝐼): integral of error and multiplied

Trang 22

Digital Controllers

PID Controller

Trang 23

𝑇𝑖 and 𝐾𝑑 = 𝐾𝑝𝑇𝑑

Trang 24

𝑒 𝑘 + 𝑢0

Trang 25

𝑇 𝑒 𝑘 − 2𝑒 𝑘 − 1 − 𝑒 𝑘 − 2

Trang 27

Digital Controllers

PID Controller

• Problems with PID controller

• Saturation and Integral Wind-up

• Causes by physical constraints

• Results in long period overshoot

• Solution: fix the limits of integral, use velocity form of PID….

• Derivative kick

• Causes by sharply change in setpoint

• Results in damage of system

Trang 28

Digital Controllers

PID Controller

• PID Tuning – Ziegler-Nichols tuning algorithm

A system can be approximated as:

𝐺 𝑠 = 𝐾𝑒

−𝑠𝑇𝐷

1 + 𝑠𝑇1

where

𝑇𝐷: System time delay

𝑇1: Time constant of system

Trang 30

Digital Controllers

PID Controller

• Close-loop Tuning

1 Leave the controller only Proportional control

2 Carry out a step input of system

3 Increase/decrease controller gain until stable oscillation This gain is called 𝐾𝑢 (ultimate gain)

4 Read the period 𝑃𝑢

5 Calculate controller parameters:

PI: 𝐾𝑝 = 0.45𝐾𝑢 and 𝑇𝑖 = 𝑃𝑢/1.2

PID: 𝐾𝑝 = 0.6𝐾𝑢, 𝑇𝑖 = 𝑃𝑢/2, 𝑇𝑑 = 𝑃𝑢/8

Trang 32

2 Explain the difference between Positional and

Velocity form of PID controller

3 The open-loop unit step response of a system is shown as figure below Obtain the transfer function

of the system and use Ziegler-Nicholes algorithm to design:

- A Proportional Controller

- A PI Controller

- A PID Controller

Trang 33

5 The continuous-time PI Controller has transfer

Ngày đăng: 23/07/2015, 15:20

TỪ KHÓA LIÊN QUAN