1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Dynamic absorbers for systems with distributed parameters

22 220 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 5,9 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

From these it follows:great... 20 NGUYEN VAN DAO and NGUYEN VAN DINHd yn am ic absorber w ith m ean values of À... This is the case, for exam ple, when the friction force A is sufficient

Trang 2

th e effect of q u en ch in g will be achieved only w ith Borne m ean values of th e friction force.

Let US c o n s id e r t h e v ib r a t io n of th e string w it h two fixed en d s at 2 = 0 an d X = t ( Fig.

1) It is a s s u m e d t h a t th e strin g is acted on by the e x t e r n a l force alon g its w h o l e le n g t h w i t h the

w h i c h e x c i t e s t h e v i b r a t i o n o f the strin g in the y -d ir ec tio n To q u e n c h th is v ib r a t io n one c a n U9e

Trang 3

4 NGUYEN van Dao and NGUYEN Van DINH

here ỈVn (t) are u n k n o w n f u n c t io n s of tim e w hich are to be d e t e r m in e d

B y m u lt ip ly in g tw o s i d e s ' o f (1.2) w ith s i n — x d z and in te g r a t in g on X from G t ) £ the

fo llo w in g e q u a t io n s for Wn and u w ill be o b ta in ed

Trang 5

6 NGUYEN VAN DAO and NGUYEN Va n DINH

T h u s , in th e first a p p r o x im a t io n the strin g v ib r a t e s CIS

We c o n s id e r now th e weak d y n a m i c absorber It is a s s u m e d t h a t t h e stiffn ess c and the m ass

m of t h e a b s o r b e r are sm a ll T h e n , instead of (1.2 ) w e have t h e follow in g e q u a t i o n s o f m o t io n

- > r dy(b, t )'

dt

u — d y j b t dt

mu 4- c | u — y ( 6 , i ) j = — A u

-T h e e q u a t i o n s for Wn and u are

w n + f i w n = <1p , + c„u - cnYn(b)Wn], mil + ÀÚ + cu = Yn(b)(cWn + AWn ),

Trang 6

From the e x p r e s s io n s ( 1 2 2 ) , (1.2 3) it follow? that

1 T h e a m p li tu d e of v ib r a t io n of the strin g d e p e n d s e s s e n t i a lly on the coefficient n f friction A of

th e absorber If X = 0 or A is very hifch the absorber d o c s not w ork effectively T h e o p tim u m

3 If c 5= mpn t h e a m p l i t u d e curve takes the form s h o w n by “0 * in Fig 3 and o b v iou sly, the

d y n a m i c a b s o r b e r in t h is case b e c o m e s more effectiv e.

Trang 7

8 N GU YEN VAN DAO and NGUYEN VAN DINH

u(t) = Y ^ U n Wn(t),

n = 1

here W n [ t ) are u n k n o w n f u n c t i o n s of t , y n ( x ) are u n k n o w n fu n c t io n s of X a n d Un are c o n s t a n t s

s a t i s f y i n g th e b o u n d a r y c o n d i t i o n s (1 3 ) and a lso th e o r t h o g o n a li t y r e la tio n s

Trang 8

To find th e e q u a t i o n s for VVn ( t) , Yn(x)i Un we s u b s t i t u t e th e e x p r e s s io n s (2 2 ) i n t o ( 2 1 ) and

E q u a t i o n for Y„(x) is of form:

T0Y::(z) + nu* Yn{I ) + c\un - Y„(b)\6(x - 6 ) = 0 and its s o l u t i o n w it h b o u n d a r y c o n d i t i o n s (1.3 ) if found u n d er the ex p a n sio n

Trang 9

N o w , t h e s o l u t i o n o f t h e in it ia l e q u a tio n s (1.2) w ill be f o u n d in t h e series:

1 0 NGU YEN VAN DAO and NGUYEN VAN DINH

oo

y ( x , t ) = ^ 2 Y n(x)Wn(t,e)

n= 1oo

u ( t ) = Y ^ u nw n(t,e),

n= 1

( 2 1 3 )

where ^ ( x ) , Un are of f o r m s ( 2 7 ) , ( 2 1 1 ) and Wn(t}e) are u n k n o w n f u n c t io n s o f t and € S u b s t i ­

tu tin g ( 2 1 3 ) i n t o (1 2 ) t h e n m u lt ip ly in g th e terms w i t h Yj (x)dx an d i n t e g r a t i n g t h e m from 0 t o £

w e ob tain t h e f o llo w in g e q u a t i o n s for W n ftjc ):

E q u a t i o n s ( 2 1 4 ) can be tr a n sfo r m e d in to the s t a n d a r d form by m e a n s o f f o rm u la e

Wj = a ; costfy, Wj = —ayu>y sin 6 j t ( 2 1 6 )

where n e w v a r i a b le s ay, 9j s a t is f y the eq u a tio n s

U) 1 t h e n in t h e first a p p r o x i m a t i o n the follow in g averaged e q u a t i o n s w ill be o b t a in e d :

Trang 10

T h e t r iv ia l so lu t io n CLi = 0 of ( 2.18) is s t a b l e if h\ < 0 or if t h e fric tion A is suffic ie ntly b ig W h e n

is s t a b l e ii

(2 ) „, n A2 > -^1-^3

2 hl

T h e s o lu t io n a 2 — 0 a ^ 0 d e t e r m in e d by

^ — - I , ' 1), ,2 „2 •J A 3 a-'jaj — rlj 4

is s t a b le if

^2‘^3 2/iị 1)

Trang 11

12 N G U Y E N VAN DAO and NGUYEN VAN DINH

Trang 12

w e h a v e for t h e w e a k a b so rb er (c,Ao are small):

I dy ( d y \ 3 f d 2z 2^< z \

1ã í _ 3 V y ~ * \ d t * + l d ĩ * )

(3.3)

W h e n € = 0 t h e s y s t e m of e q u a t io n s (3.3 ) has the solu tion:

y = sin —nx(an coscưnt + òn s i n cưn í ) , n

2 = ^ s i n ^ n x ( a n coseJn t -f p n sin a;n i),

S u b s t i t u t i n g e x p r e s s i o n s (3.4 ) into (3.3 ) and c o m p a r in g the coefficie nts o f h a r m o n ic s s in -~nx w e

o b t a i n e q u a t i o n s for ân , 6n T h e n c o m b in i n g t h e m w ith (3.6) w e get t h e e q u a t io n s fo r ả n , 6fl in

t h e s t a n d a r d fo rm s For ã ị and bị w e have

u>iài = t 1 /?■! a i - — h ^ a ỵ ( á ị + b \ ) -f ei ( ^ ) ” ^ sin2 -h

— € I 1/11^1 — — OJ'I h^biịâị + èỊ) — Z\ ị co s 2 +

A v e r a g i n g t h e rig h t h a n d sides of (3.7 ) over th e t im e w e get

“ lài = ị I uiỵhi - $d 2 ịe] [j'j - U>ỶJ

Trang 13

14 NGUYEN VAN DAO and NGUYEN VAN DINH

th e vib ration o f th e b e a m If the vib ration s w ith high frequencies &re neglected , the eq u a tio n s

and th e so lu tio n (3 1 1 ) is alw ays stable w ith p o sitiv e values o f A.

We have m et w ith the form ula of type (3.11) and we have seeji w h a t the m in im u m o f A achieves w ith an averaged value o f A (see Fig 3) It is worth m entioning th a t w hen tw o low est frequencies of tw o b ea m s are equal:

then

Wi = V u < A = e 2 ( j ) ( Ị ) + 1

(e? - e 2) ( 7 ) + 7 = 0

absorber at its m ost effective G enerally, to quench th e vib ration of the b eam at a frequency u>y it

For a strong absorber (c is n ot sm all) the m o tio n equations are of form:

+ E I j £ + c(y - z ) = e f u

P1S1^ 5 - + E i h Ỵ - Ị + c(z - y) = e/a,

(3.13)

Trang 14

w ith th e b o u n d a r y c o n d itio n s (3.2), here

Trang 15

N on trivial so lu tio n of (3 2 1 ) corresponds to the values u>„ w hich satisfy the frequency equ ation s:

1 6 NGUYEN VAN DAO and NGUYEN VAN DINH

= 0 ( 3 2 2 )

j = 1, 2 , , oo T h u s w e have a set of values of frequencies u ị, ,cô ị > d ep en d in g on j

For qu asilm ear eq u a tio n s (3.13) we put

oo

5 3 P i 5 i Z n ( z ) [ f „ + w ^ r n Ị = e / 2

( 3 2 4 )

n — 1

In the first ap p ro x im a tio n we can replace the right hand sides of (3.28) by th e ừ averaged

Trang 16

From these it follows:

great In th is case, follow ing the formulae (3.23), (3.27) the vibration of the beam does n ot occur.

= hm L > 0

if

o L * L ( 1 )

• ấ l ), 2 A 2 ^ 2 3 - J UJI A1 ^

4) T h e v ib ra tio n a l regim e w ith tw o frequencies U>1 and u>2 is alw ays un stab le.

It is w orth m en tion in g th a t the effect of absorber w ill disappear if the coefficien t o f A in the

Trang 17

4 A B S O R B E R F O R S E L F -E X C I T E D V I B R A T I O N O F T H E P L A T E

1 8 NGUYEN VAN DAO and NGUYEN VAN DINH

T he problem presented in the previous paragraph m ay be considered for a more com p licated

sy stem , nam ely, for th e p late Self-excited vibration of a p late (D , /Ắ, u) under the action o f the

sm a ll force

edges we have the follow ing boundary conditions:

Trang 18

-We sh all find t h e s o lu t io n of (4 4) w ith b' nndary c o n d iti o n s (4 2 ) in th e form:

u = sin - n x sin j m y ( a nm COS wnmt + i „ m 8Ín w nm t),

&nm C08 UJnrnt 4" bnrn sin UJfimt = 0,

z = y ^ s i n - n x sin 7 m y ( a nfn COSUnmt + Pnm sinu;n m t),

w 2 nm =

I/ 2 =

^ n m

/7T n \ 2 / ? r m \ ( a ) + ( 6 )

the v ib r a t in g c o m p o n e n t s w i t h h igher frequencie s and s o lv i n g th e e q u a t i o n s (4.5 ) a n d (4 7 ) w i t h

r esp ect to a i l and fcu w e have:

Trang 19

20 NGUYEN VAN DAO and NGUYEN VAN DINH

d yn am ic absorber w ith m ean values of À In general, the effectiveness of th e absorber for q u en ch in g

o f th e p l a t e s c o i n c id e

case the m o tio n o f th e plates is governed by the equations:

w ith th e boundary con d ition s (4.2).

00

x i y) = y * ! Unm(Xị y ) T nm (t),

n,m = 1 oo

Trang 20

ind the o r th ogon ality relations

+ e - u?m - cZ”m = 0 ,

(4 2 2 ) + c - z?n - cUZl = 0.

T h e n o n t r iv i a l s o lu t io n of th e se alg ebraic eq u a tio n s corresp ond s to th e v a lu es o f U)nm) for w h i c h

Trang 21

S u b s t i t u t i n g these expressions into (4.14) we obtain

FVom the first equation of (4.31) it follows that the equilibrium A ll = 0 w ill be sta b le if

H i < 0 This is the case, for exam ple, when the friction force (A) is sufficiently great.

Trang 22

S A T o n d l, Q u e n c h in g of •elf-excited v ib ra tio n s, J Sound and V ibrations: E q u ilib riu m A sp ects, Vol 42, N o 2,

252, 1975, O n e an d tw o freq u en cy v ib ra tio n , Vol 42, No s, 261, 1975

4 A T o n d l, Q u en ch in g of te lf-e x c ite d v ib ratio n s: Effect of Dry Friction, J Sound v ib ra tio n s, V ol.45, 285, 1976

5 A T o n d l, A p p lic a tio n of tu n e d ab so rb ers to Belf-excited system s w ith several m asses, P ro ceed in g s o f th e

X lth conference D ynam ic* of m achines P ra g u e 1977

6 P H ag ed o rn , U b e r die T ilg u n g g e lb sterrerg ter Schwingungen ZAM P., Vol 29, 815, 1978

7 N guyen V an D in h , T h e tu n e d a b so rb e r in »elf-excited •ystem , J M echanics,H anoi, No - 3 - 4 , 1979

8 N guyen Van D in h , T h e d y n a m ic ab so rb ers in quaailinear system s, D issertatio n , H anoi, 1980

Ô N guyen Van D a o , A n o te on th e dynam ic ab so rb er, J M echanics, Hanoi, No 2, 1982

10 N guyen Van D ao , N guyen V an D in h , D ynam ic absorber for »elf - ex cited sy stem s, P ro ceed in g s of X lV thconference D ynam ic* of m ach in es, P rag u e, S eptem ber 1983

11 N guyen Van D ao , Q u en ch in g of »elf-excited O scillations of m echanical sy stem IC N O -X B ulgarie, 1984

12 N guyen V an D ao , D y n a m ic a b s o rb e r for self-excited system w ith d is trib u te d p a ra m e te rs, J M echanics, H an o i,

N o 4, 1985

IS N guyen V an D ao , D y n am ic a b so rb e r for drilling in stru m en t, Proceedings of IC N O -X I, B u d a p e s t 1987

14 N N B ogoliubov, Y u A M itro p o lsk i, A sy m p to tic m ethods in th e theory of n o n lin e a r v ib ra tio n s, M oscow 1963

15 N guyen Van D ao , D y n am ic a b so rb e r for •elf-excited system w ith limit energy resource, J M echanics, H an o i,

Ngày đăng: 08/04/2015, 15:28

TỪ KHÓA LIÊN QUAN