From these it follows:great... 20 NGUYEN VAN DAO and NGUYEN VAN DINHd yn am ic absorber w ith m ean values of À... This is the case, for exam ple, when the friction force A is sufficient
Trang 2th e effect of q u en ch in g will be achieved only w ith Borne m ean values of th e friction force.
Let US c o n s id e r t h e v ib r a t io n of th e string w it h two fixed en d s at 2 = 0 an d X = t ( Fig.
1) It is a s s u m e d t h a t th e strin g is acted on by the e x t e r n a l force alon g its w h o l e le n g t h w i t h the
w h i c h e x c i t e s t h e v i b r a t i o n o f the strin g in the y -d ir ec tio n To q u e n c h th is v ib r a t io n one c a n U9e
Trang 34 NGUYEN van Dao and NGUYEN Van DINH
here ỈVn (t) are u n k n o w n f u n c t io n s of tim e w hich are to be d e t e r m in e d
B y m u lt ip ly in g tw o s i d e s ' o f (1.2) w ith s i n — x d z and in te g r a t in g on X from G t ) £ the
fo llo w in g e q u a t io n s for Wn and u w ill be o b ta in ed
Trang 56 NGUYEN VAN DAO and NGUYEN Va n DINH
T h u s , in th e first a p p r o x im a t io n the strin g v ib r a t e s CIS
We c o n s id e r now th e weak d y n a m i c absorber It is a s s u m e d t h a t t h e stiffn ess c and the m ass
m of t h e a b s o r b e r are sm a ll T h e n , instead of (1.2 ) w e have t h e follow in g e q u a t i o n s o f m o t io n
- > r dy(b, t )'
dt
u — d y j b t dt
mu 4- c | u — y ( 6 , i ) j = — A u
-T h e e q u a t i o n s for Wn and u are
w n + f i w n = <1p , + c„u - cnYn(b)Wn], mil + ÀÚ + cu = Yn(b)(cWn + AWn ),
Trang 6From the e x p r e s s io n s ( 1 2 2 ) , (1.2 3) it follow? that
1 T h e a m p li tu d e of v ib r a t io n of the strin g d e p e n d s e s s e n t i a lly on the coefficient n f friction A of
th e absorber If X = 0 or A is very hifch the absorber d o c s not w ork effectively T h e o p tim u m
3 If c 5= mpn t h e a m p l i t u d e curve takes the form s h o w n by “0 * in Fig 3 and o b v iou sly, the
d y n a m i c a b s o r b e r in t h is case b e c o m e s more effectiv e.
Trang 78 N GU YEN VAN DAO and NGUYEN VAN DINH
u(t) = Y ^ U n Wn(t),
n = 1
here W n [ t ) are u n k n o w n f u n c t i o n s of t , y n ( x ) are u n k n o w n fu n c t io n s of X a n d Un are c o n s t a n t s
s a t i s f y i n g th e b o u n d a r y c o n d i t i o n s (1 3 ) and a lso th e o r t h o g o n a li t y r e la tio n s
Trang 8To find th e e q u a t i o n s for VVn ( t) , Yn(x)i Un we s u b s t i t u t e th e e x p r e s s io n s (2 2 ) i n t o ( 2 1 ) and
E q u a t i o n for Y„(x) is of form:
T0Y::(z) + nu* Yn{I ) + c\un - Y„(b)\6(x - 6 ) = 0 and its s o l u t i o n w it h b o u n d a r y c o n d i t i o n s (1.3 ) if found u n d er the ex p a n sio n
Trang 9N o w , t h e s o l u t i o n o f t h e in it ia l e q u a tio n s (1.2) w ill be f o u n d in t h e series:
1 0 NGU YEN VAN DAO and NGUYEN VAN DINH
oo
y ( x , t ) = ^ 2 Y n(x)Wn(t,e)
n= 1oo
u ( t ) = Y ^ u nw n(t,e),
n= 1
( 2 1 3 )
where ^ ( x ) , Un are of f o r m s ( 2 7 ) , ( 2 1 1 ) and Wn(t}e) are u n k n o w n f u n c t io n s o f t and € S u b s t i
tu tin g ( 2 1 3 ) i n t o (1 2 ) t h e n m u lt ip ly in g th e terms w i t h Yj (x)dx an d i n t e g r a t i n g t h e m from 0 t o £
w e ob tain t h e f o llo w in g e q u a t i o n s for W n ftjc ):
E q u a t i o n s ( 2 1 4 ) can be tr a n sfo r m e d in to the s t a n d a r d form by m e a n s o f f o rm u la e
Wj = a ; costfy, Wj = —ayu>y sin 6 j t ( 2 1 6 )
where n e w v a r i a b le s ay, 9j s a t is f y the eq u a tio n s
U) 1 t h e n in t h e first a p p r o x i m a t i o n the follow in g averaged e q u a t i o n s w ill be o b t a in e d :
Trang 10T h e t r iv ia l so lu t io n CLi = 0 of ( 2.18) is s t a b l e if h\ < 0 or if t h e fric tion A is suffic ie ntly b ig W h e n
is s t a b l e ii
(2 ) „, n A2 > -^1-^3
2 hl
T h e s o lu t io n a 2 — 0 a ^ 0 d e t e r m in e d by
^ — - I , ' 1), ,2 „2 •J A 3 a-'jaj — rlj 4
is s t a b le if
^2‘^3 2/iị 1)
Trang 1112 N G U Y E N VAN DAO and NGUYEN VAN DINH
Trang 12w e h a v e for t h e w e a k a b so rb er (c,Ao are small):
I dy ( d y \ 3 f d 2z 2^< z \
1ã í _ 3 V y ~ * \ d t * + l d ĩ * )
(3.3)
W h e n € = 0 t h e s y s t e m of e q u a t io n s (3.3 ) has the solu tion:
y = sin —nx(an coscưnt + òn s i n cưn í ) , n
2 = ^ s i n ^ n x ( a n coseJn t -f p n sin a;n i),
S u b s t i t u t i n g e x p r e s s i o n s (3.4 ) into (3.3 ) and c o m p a r in g the coefficie nts o f h a r m o n ic s s in -~nx w e
o b t a i n e q u a t i o n s for ân , 6n T h e n c o m b in i n g t h e m w ith (3.6) w e get t h e e q u a t io n s fo r ả n , 6fl in
t h e s t a n d a r d fo rm s For ã ị and bị w e have
u>iài = t 1 /?■! a i - — h ^ a ỵ ( á ị + b \ ) -f ei ( ^ ) ” ^ sin2 -h
— € I 1/11^1 — — OJ'I h^biịâị + èỊ) — Z\ ị co s 2 +
A v e r a g i n g t h e rig h t h a n d sides of (3.7 ) over th e t im e w e get
“ lài = ị I uiỵhi - $d 2 ịe] [j'j - U>ỶJ
Trang 1314 NGUYEN VAN DAO and NGUYEN VAN DINH
th e vib ration o f th e b e a m If the vib ration s w ith high frequencies &re neglected , the eq u a tio n s
and th e so lu tio n (3 1 1 ) is alw ays stable w ith p o sitiv e values o f A.
We have m et w ith the form ula of type (3.11) and we have seeji w h a t the m in im u m o f A achieves w ith an averaged value o f A (see Fig 3) It is worth m entioning th a t w hen tw o low est frequencies of tw o b ea m s are equal:
then
Wi = V u < A = e 2 ( j ) ( Ị ) + 1
(e? - e 2) ( 7 ) + 7 = 0
absorber at its m ost effective G enerally, to quench th e vib ration of the b eam at a frequency u>y it
For a strong absorber (c is n ot sm all) the m o tio n equations are of form:
+ E I j £ + c(y - z ) = e f u
P1S1^ 5 - + E i h Ỵ - Ị + c(z - y) = e/a,
(3.13)
Trang 14w ith th e b o u n d a r y c o n d itio n s (3.2), here
Trang 15N on trivial so lu tio n of (3 2 1 ) corresponds to the values u>„ w hich satisfy the frequency equ ation s:
1 6 NGUYEN VAN DAO and NGUYEN VAN DINH
= 0 ( 3 2 2 )
j = 1, 2 , , oo T h u s w e have a set of values of frequencies u ị, ,cô ị > d ep en d in g on j
For qu asilm ear eq u a tio n s (3.13) we put
oo
5 3 P i 5 i Z n ( z ) [ f „ + w ^ r n Ị = e / 2
( 3 2 4 )
n — 1
In the first ap p ro x im a tio n we can replace the right hand sides of (3.28) by th e ừ averaged
Trang 16From these it follows:
great In th is case, follow ing the formulae (3.23), (3.27) the vibration of the beam does n ot occur.
= hm L > 0
if
o L * L ( 1 )
• ấ l ), 2 A 2 ^ 2 3 - J UJI A1 ^
4) T h e v ib ra tio n a l regim e w ith tw o frequencies U>1 and u>2 is alw ays un stab le.
It is w orth m en tion in g th a t the effect of absorber w ill disappear if the coefficien t o f A in the
Trang 174 A B S O R B E R F O R S E L F -E X C I T E D V I B R A T I O N O F T H E P L A T E
1 8 NGUYEN VAN DAO and NGUYEN VAN DINH
T he problem presented in the previous paragraph m ay be considered for a more com p licated
sy stem , nam ely, for th e p late Self-excited vibration of a p late (D , /Ắ, u) under the action o f the
sm a ll force
edges we have the follow ing boundary conditions:
Trang 18-We sh all find t h e s o lu t io n of (4 4) w ith b' nndary c o n d iti o n s (4 2 ) in th e form:
u = sin - n x sin j m y ( a nm COS wnmt + i „ m 8Ín w nm t),
&nm C08 UJnrnt 4" bnrn sin UJfimt = 0,
z = y ^ s i n - n x sin 7 m y ( a nfn COSUnmt + Pnm sinu;n m t),
w 2 nm =
I/ 2 =
^ n m
/7T n \ 2 / ? r m \ ( a ) + ( 6 )
the v ib r a t in g c o m p o n e n t s w i t h h igher frequencie s and s o lv i n g th e e q u a t i o n s (4.5 ) a n d (4 7 ) w i t h
r esp ect to a i l and fcu w e have:
Trang 1920 NGUYEN VAN DAO and NGUYEN VAN DINH
d yn am ic absorber w ith m ean values of À In general, the effectiveness of th e absorber for q u en ch in g
o f th e p l a t e s c o i n c id e
case the m o tio n o f th e plates is governed by the equations:
w ith th e boundary con d ition s (4.2).
00
x i y) = y * ! Unm(Xị y ) T nm (t),
n,m = 1 oo
Trang 20ind the o r th ogon ality relations
+ e - u?m - cZ”m = 0 ,
(4 2 2 ) + c - z?n - cUZl = 0.
T h e n o n t r iv i a l s o lu t io n of th e se alg ebraic eq u a tio n s corresp ond s to th e v a lu es o f U)nm) for w h i c h
Trang 21S u b s t i t u t i n g these expressions into (4.14) we obtain
FVom the first equation of (4.31) it follows that the equilibrium A ll = 0 w ill be sta b le if
H i < 0 This is the case, for exam ple, when the friction force (A) is sufficiently great.
Trang 22S A T o n d l, Q u e n c h in g of •elf-excited v ib ra tio n s, J Sound and V ibrations: E q u ilib riu m A sp ects, Vol 42, N o 2,
252, 1975, O n e an d tw o freq u en cy v ib ra tio n , Vol 42, No s, 261, 1975
4 A T o n d l, Q u en ch in g of te lf-e x c ite d v ib ratio n s: Effect of Dry Friction, J Sound v ib ra tio n s, V ol.45, 285, 1976
5 A T o n d l, A p p lic a tio n of tu n e d ab so rb ers to Belf-excited system s w ith several m asses, P ro ceed in g s o f th e
X lth conference D ynam ic* of m achines P ra g u e 1977
6 P H ag ed o rn , U b e r die T ilg u n g g e lb sterrerg ter Schwingungen ZAM P., Vol 29, 815, 1978
7 N guyen V an D in h , T h e tu n e d a b so rb e r in »elf-excited •ystem , J M echanics,H anoi, No - 3 - 4 , 1979
8 N guyen Van D in h , T h e d y n a m ic ab so rb ers in quaailinear system s, D issertatio n , H anoi, 1980
Ô N guyen Van D a o , A n o te on th e dynam ic ab so rb er, J M echanics, Hanoi, No 2, 1982
10 N guyen Van D ao , N guyen V an D in h , D ynam ic absorber for »elf - ex cited sy stem s, P ro ceed in g s of X lV thconference D ynam ic* of m ach in es, P rag u e, S eptem ber 1983
11 N guyen Van D ao , Q u en ch in g of »elf-excited O scillations of m echanical sy stem IC N O -X B ulgarie, 1984
12 N guyen V an D ao , D y n a m ic a b s o rb e r for self-excited system w ith d is trib u te d p a ra m e te rs, J M echanics, H an o i,
N o 4, 1985
IS N guyen V an D ao , D y n am ic a b so rb e r for drilling in stru m en t, Proceedings of IC N O -X I, B u d a p e s t 1987
14 N N B ogoliubov, Y u A M itro p o lsk i, A sy m p to tic m ethods in th e theory of n o n lin e a r v ib ra tio n s, M oscow 1963
15 N guyen Van D ao , D y n am ic a b so rb e r for •elf-excited system w ith limit energy resource, J M echanics, H an o i,