1. Trang chủ
  2. » Luận Văn - Báo Cáo

Design and implementation of a testbed for indoor mimo systems

61 356 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 61
Dung lượng 22,38 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2.1.2 Rank and Condition number... Eigenvalues for 3x3 IMIMO system as a function of deviation factor in dB forpure LOS channel Figure 6.. The capacity of MIMO system... R ecent1 Selecti

Trang 1

V I E T N A M N A T I O N A L U N I V E R S I T Y H A N O I

C O L L E G E O F T E C H N O L O G Y

VU XUAN THANG

DJEDESIGN AND IMPLEMENTATION OF A TESTBED

FOR INDOOR MIMO SYSTEMS

Trang 3

A C K N O W L E D G E M E N T

I w o u l d like to g i v e a w a r m th a n k to Prof N g u y e n D in h T h o n g a n d Dr T rin h A n h V u,

m y s u p e r v is o r s , fo r th e ir c o n s id e r a b le h elp in m y ti m e s tu d y in g m y m a ste r 1 w o u ld like to t h a n k m y c o l le a g u e s , fa m ily and frie n d s for th e ir u n b e n d i n g s u p p o r t and

e n c o u r a g e m e n t

Trang 4

C O N T E N T S

A b s t r a c t

A b b r e v i a t i o n s

L ist o f F i g u r e

C h a p t e r 1 I n t r o d u c t i o n 1

C h a p t e r 2 M I M O m o d e l s a n d c h a r a c t e r i s t i c s .4

2.1 M a t h e m a t i c a l M I M O m o d e l .4

2.1.1 C a p a c i t y v ia S in g le V a l u e D e c o m p o s i t i o n 4

2 1 2 R a n k a n d C o n d i t i o n n u m b e r 6

2 2 P h y s ic a l M I M O m o d e l 7

2.2.1 L i n e o f s ig h t S I M O 8

2 2 2 L i n e o f s ig h t M 1 S O 9

2 2 3 A n t e n n a a r r a y s w ith o n ly L O S p a t h 10

2.3 K e y p a r a m e t e r s in M I M O c h a n n e l 1 1 2.3.1 A n t e n n a s e p a r a t i o n 1 1 2 3 2 R e s o lv a b ili ty in th e a n g u l a r d o m a i n 15

2 4 A n t e n n a S e le c tio n A l g o r i t h m s 16

C h a p t e r 3 M I M O T e s t b e d f o r i n d o o r e n v i r o n m e n t 21

3.1 A s u r v e y o f M I M O T e s t b e d d e s i g n 21

3.1.1 T h e M I M O T e s t b e d at V i e n n a U n i v e r s i t y .21

3 1 2 T h e M I M O T e s t b e d at B r i g h a m Y o u n g U n i v e r s i t y 21

3.1 3 T h e M I M O T e s t b e d at T h e U n i v e r s i t y o f B ris to l 22

3 1 4 T h e M I M O T e s t b e d at A l b e r t a U n iv e r s it y 22

3.2 D e s i g n T o o l s .22

3.2.1 X i l i n x X t r e m e D S P V ir te x - 4 K i t 22

3 2 2 S y s te m G e n e r a t o r 2 7 3 2.3 I S E S o f t w a r e 2 9 3.3 T e s t b e d D e s c r ip ti o n 30

3.3.1 R F M o d u l e 3 0 3 3 2 D ig it a l T r a n s m i t t e r 32

3 3.3 D ig ita l R e c e i v e r 35 3.3.3.1 T i m i n g S y n c h r o n i z a t i o n .3 6

Trang 5

3 3 3 2 C o r r e la tio n B l o c k .36

3 3 3 3 M a x i m u m S e l e c t o r 37

3 3 3 4 S ig n a l D e te c tio n B lo c k 38

3 3 3 5 S y n c h r o n i z a t i o n D e t e c t o r 39

C h a p t e r 4 I m p l e m e n t i n g R e s u l t s o f M I M O T e s t b e d .41

4.1 R F I m p l e m e n t i n g R e s u l t s 41

4 2 B a s e b e n d I m p l e m e n t i n g R e s u lt s 42

4 3 C o m p l e t e R e c e i v e r fo r M I M O s y s t e m .45

C o n c l u s i o n s 4 9 R e f e r e n c e s 50

R e l a te d P u b l i c a t i o n s .52

Trang 8

L I S T O F F I G U R E S

F ig 1 E q u i v a l e n t c h a n n e l o f MI M O c h a n n e l t h r o u g h S V D 6

F ig 2 A r c h i t e c t u r e o f M I M O w ith S V D 6

F ig 3 L in e o f s ig h t S I M O a n d L i n e o f s ig h t M I S O c h a n n e l s 9

F ig 4 A g e n e ra l M I M O s y s t e m w ith U l A s at b o th th e T x a n d R x 12

F ig 5 E i g e n v a l u e s fo r 3 x 3 M I M O s y s t e m as a fu n c tio n o f d e v i a tio n fa c to r in dB for p u r e I O S c h a n n e l .14

F ig 6 T h e c a p a c it y o f M I M O s y s t e m 14

F ig 7 T h e f u n c ti o n f r ( Q , ) p lo t e d as a f u n c tio n o f Q , for fixed L r = 8 and d if f e r e n t v a l u e s o f th e n u m b e r o f r e c e iv e a n t e n n a n r 16

F ig 8 A n i n d o o r M I M O s c e n a r i o c o m m u n i c a t i n g th r o u g h a s m a ll h o le in th e w a ll b e t w e e n t w o r o o m s 17

F ig 9 V a r ia t io n o f e i g e n v a l u e s w i t h th e w id th o f th e h o le .18

F ig 10 C a p a c ity v e r s u s h o le s iz e d u e to s e le c tio n o f th re e a n d t w o r e c e iv e a n t e n n a u s i n g n o r m - b a s e d in c r e m e n t a l a lg o ri th m .19

F ig 11 A c t u a l c a p a c it y lo ss f r o m F ig u r e 10 c o m p a r e d to th e u p p e r b o u n d L r in e q u a t i o n (5 1 ) 20

F i g 12 T h e p h y s ic a l la y o u t b o a r d 23

F ig 13 A D C to F P G A I n te r f a c e .24

F ig 14 D A C I n t e r f a c e 25

F ig 15 Z B T S R A M I n te r f a c e 26

F ig 16 X i l i n x D S P B l o c k s e t s 28

F i g 17 H a r d w a r e C o - s i m u l a t i o n .28

F i g 18 P r o je c t N a v i g a t o r 29

F ig 19 T h e T e s t b e d D i a g r a m 30

F ig 20: S tr u c t u r e o f R F IC M a x 2 8 2 9 31

F ig 21: B l o c k d i a g r a m o f R F t r a n s c e i v e r 32

F ig 22: D u a l - b a n d R F tr a n s c e i v e r m o d u l e 32

F ig 23: B a s e b a n d T r a n s m i t t e r D ia g r a m 33

F ig 24: D a t a G e n e r a t o r B lo c k 33

F ig 25: D a ta , 3 2 - l e n g t h W a l s h c o d e a n d C o d e d s i g n a l 34

F ig 26: B a s e b a n d S ig n a l, IF w a v e a n d IF s ig n a l 34

F i g 27: B a s e b a n d R e c e i v e r D i a g r a m .35

Trang 9

F i g 28: T i m i n g s y n c h r o n i z a t i o n 36

F ig 29: C o r r e la tio n B lo c k .36

F ig 30: C o r r e l a t i o n V a lu e .37

F ig 31: A b s o l u t o r .37

F ig 32: M a x i m u m s e l e c t o r 38

F ig 33 C o r r e la tio n s ig n a l A b s o l u t e s ig n a l a n d M a x i m u m t i m e 38

F ig 34 S ig n a l d e t e c t o r .38

F ig 35 S y n c h r o n i z a t i o n D e t e c t i o n B lo c k 39

F ig 36: T r a n s m i t t e d d a ta C o r r e l a t i o n a n d R e c e iv e d D a t a 4 0 F ig 37: R F c o n t r o l le r i n t e r f a c e .42

F ig 38: S p e c t r u m o f t r a n s m i t t e d s ig n a l w ith c e n tre f r e q u e n c y is at 2 4 3 7 G H z 42

F ig 39: C o r r e la tio n R e c e i v e I m p l e m e n t a t i o n W a ls h c o d e a n d D a t a 43

F ig 40: B a s e b a n d s ig n a l a n d IF s ig n a l .43

F ig 41: B a s e b a n d C o r r e l a t i o n R e c e i v e R e s u lts 43

F ig 42: Channel coefficients estim ated vs S N R 4 4 F ig 43: B E R o f Correlation Receiver for SISO 4 4 F ig 44: 2 x 2 M I M O M e a s u r e m e n t D i a g r a m 45

F ig 45: R e c o v e r e d D a ta in R X 1 4 6 F ig 46: R e c o v e r e d D a t a in R X 2 .47

F ig 47: R X D a t a a t A n t e n n a 1 w h e n D if f e r e n t T X D a t a a r e u s e d .47

F ig 48: C h a n n e l c o e f f i c ie n t s e s t i m a t e d o v e r S N R 4 8

Trang 10

CH A PT E R 1

IN T R O D U C T IO N

T h e d e v e lo p m e n t o f s e rv ic e s in c o m m u n ic a tio n s puts h e a v y p re s s u re on w ireless

c o m m u n ic a tio n s , n o t o n ly to e n h a n c e the q u ality o f serv ice but also to increase the

sp e c tru m e ffic ie n c y o f c o m m u n ic a tio n links T h e re h a v e been several solutions

p ro p o s e d a n d d e v e lo p e d T h e m u ltip le input- m u ltip le o u tp u t ( M I M O ) techn iq u e is

on e o f the m o s t p ro m is in g s o lu tio n s for the n ext g e n e ra tio n w ire le ss co m m u n ic a tio n s

w h ic h b e n e fits from m u lti-p a th p ro p a g a tio n By splitting a genera l data stream into several sm all, u n c o rre la te d parallel ones, a M I M O s y stem can a ch iev e significant

e n h a n c e m e n t in c a p a c ity as w ell as reliability T h e p e rfo rm a n c e o f a M IM O system

d e p e n d s g re a tly on h o w m a n y s u b -s tr e a m s it has and h o w c o rre la te d the sub-stream s are In g e n era l, the M I M O chan n e l is d e te rm in e d by m a n y p a ra m e te rs such as reflection, scatterin g , s h a d o w in g , a n te n n a s e p aratio n , and ang le o f arrival w aves

U n fo rtu n a te ly , a g iv e n M I M O s y ste m is best suited only to the set o f p ropagation

p a ra m e te rs it is d e s ig n e d for T his s tro n g ly req u ire s us to k n o w th e se p a ram eters well

b e fo re d e s ig n in g an indiv id u al M IM O s y ste m , as w ell as a p p ly in g algorithm s T here

h a v e been a n u m b e r o f m o d e ls for s im u la tin g M I M O chan n e ls H o w e v e r, those M IM O

m o d e ls c a n n o t a p p ly to all situ ations H e n c e the b e s t w a y to k n o w ac c u ra te ly about the

M I M O c h a n n e l is to m e a s u r e it in real c o n d itio n s by u s in g a M I M O testbed T hat is

w h y the a u th o r c h o o s e s the d e s ig n o f a M I M O testbed as the topic for his M asters thesis

In gen era l, m u lti-p a th is h o stile to w ire le ss p ro p a g a tio n that results in fading in

th e re c e iv ed signal In c o n tra st, M I M O m a k e s u s e o f m u ltip a th p ro p a g a tio n to im prove its d ata rate In ad d itio n , the use o f m u ltip le a n te n n a s at both tra n sm itter and rece iver

d e p lo y s c o n s id e ra b le spatial diversity R e c e n tly , M I M O c o m b in e d w ith O F D M

te c h n iq u e p ro m is e s a p o te n tia l s o lu tio n for 3G and the n e x t g e n e ra tio n w ireless

c o m m u n ic a tio n s

M I M O c h a n n e l c a p a c ity d e p e n d s m a in ly on the statistical properties o f the

c h a n n e l a n d on the a n te n n a s correlatio n A n te n n a co rrelatio n v arie s significantly as a

fu n c tio n o f the sc a tte rin g c o n d itio n , the tra n s m is s io n d ista n ce, the anten n a structures

a n d the D o p p le r sp read A s w e shall see, th e effect o f a n te n n a co rrelatio n on capa city

d e p e n d s on the c h a n n e l ’s c h a ra c te ristic s at the tra n s m itte r a n d receiver A dditionally,

c h a n n e ls w ith v ery lo w c o rre la tio n b e tw e e n an te n n a s can still ex hibit a “ k e y h o le ” effect w h e r e the c h a n n e l m a trix 's rank is defic ien t, leading to loss o f capacity gains

Trang 11

N u m e ro u s recent w o rk s have d ev e lo p e d both analytical and m e a su re m e n t-b a se d

M IM O channel m o d e ls w ith the co rre s p o n d in g capacity calculations for typical indoor and o u td o o r e n v iro n m e n ts [9,10,1 1,12],

D esig n in g h a rd w a re for M IM O channel m e a su re m e n t is a big ch allenge that requires expertise a n d k n o w le d g e o f both digital d esign and R F design T he testbed

T hanks to the d e v e lo p m e n t o f digital electronics, both b a s e b a n d and IF parts can be

im plem ented on F P G A b o ards w h ic h are s u p p o rted by high speed A D C s and D A C s A group o f re s e a rc h e rs at V ie n n a U n iv ersity built a M IM O T e s tb e d for the purpose o f rapid p ro to ty p in g a n d a lg o rith m testing for w ireless tran sm issio n [9], This design takes advantage o f the flexibility o f c o m p u te r so ftw are such as M atlab and the availability o f high speed D S P / F P G A chips O ne ad v a n ta g e o f this testb ed is that it supports m any types o f m o d u la tio n b e c a u se the b aseb an d signal p ro c e s s in g is p e rfo rm e d by M atlab

So algorithm ic re s e a rc h e rs do not need to have a d eep k n o w le d g e o f h ard w are design

A research te am at B rig h a m Y o u n g U n iv ersity has d e v e lo p e d a 4 * 4 M IM O

p rototyping te stb ed that o p erates at 2.45 G H z [10], Both the tra n sm itter and receiver stations are b a s e d on fixed p o in t digital signal p ro c e s s in g (D S P ) m ic ro p ro cesso r

d e v elo p m en t b o a rd s a n d use c u sto m fo u r-ch an n el radio fre q u e n c y (R F ) m odules The most c o m p le te te stb e d is a 4 x 4 M I M O d e v e lo p e d at the U n iv e rs ity o f A lberta [12]

T he testb ed o p e ra te s at 9 0 2 -9 2 8 M H z IS M fre q u e n c y band B a s e b a n d and IF processes are im p lem en ted o n a G V A 290 board: at its heart are tw o X ilinx V irtex -E 2 0 0 0

F P G A s, fo u r 12-bit A n a lo g to Digital C o n v e rte r A D 9 7 6 2 and fo u r 12-bit Digital to

A nalog C o n v e rte r A D 9 4 3 2 F o u r W alsh co d e seq u e n c e s w hich are the s am e as those

in the tran sm itter are g en era ted at the receiver T he signal from each receive antenna is correlated w ith the four W alsh codes in the re c e iv e r to e stim ate four channel coefficients H c n c e , in total, there are 16 correlators n eed e d to estim ate all 4x4 channel transfer functions T h e estim ated results are then input to a PC to perfo rm the singular value d e c o m p o s itio n to obtain the channel capacity

T h is thesis p re s e n ts the design and im p lem en tatio n o f both th e RF section and

b as eband section T h e im p lem en tatio n o f a c o m p le te S IS O system has been successfully c o m p le te d T he extension to build a c o m p le te M I M O testbed in an indoor

e n v ironm ent is u n d e rw a y T h e testbed s u p p o rts dual b an d o f 2.45 G H z and 5 G H z and

a num ber o f m o d u la tio n types RF part is built b as e d on IC M a x 2829 w h ich is a special IC for rad io fre q u e n c y transm ission T he o th e r parts o f the testbed are

im p lem en ted in a F P G A platform W e dep lo y the X ilinx X tr e m e D S P D e v e lo p m e n t

V i r e x - 4 K it for this design At the transm itter, data s e q u e n c e is m ultip lied to different

W a s h codes c o rre s p o n d in g to different tran sm it anten n as, before b ein g passed on to

th e m o d u la to r and the freq u en cy up-co n v erter The resulting IF signal is then passed

o n o the D A C to be c o n v e rte d into a n a lo g and u p -c o n v e rte d to the carrier frequency

T h t re ce iv er u ses the co rrelation te ch n iq u e to estim ate the chan n e l coefficients The

Trang 12

signal fro m each re c e iv e a n te n n a is p a s s e d th r o u g h th e 4 c o rre la to rs in o u r 4 x 4 testbed,

w h ich h a v e W a ls h arra y s the s a m e as in the tra n sm itte r T h e r e c e i v e r ’s d ata is then sent to M a tl a b to c o m p u te the c h an n e l m a trix , h e n c e e s tim a tin g the c h a n n e l capacity

T h e r e m a in d e r o f this th e sis is c o n s tru c te d as follow s: C h a p t e r 2 p re s e n ts s o m e

M IM O m o d e ls and th e ir c h a ra cteristics; C h a p t e r 3 is a b o u t the d e s ig n a n d s im u latio n

o f the in d o o r M I M O te stb ed , a n d the results and c o n c lu s io n s are s h o w n a n d a n a ly z e d

in C h a p t e r 4

Trang 13

C H A P T E R 2

M IM O M O D E L S AND CHARACTERISTICS

T h i s c h a p te r d e s c rib e s the M I M O model from tw o m ain po in ts o f view: the

m a th e m a tic a l v ie w a n d the ph y sical view In addition, the key p ara m e te rs w hich

d e te rm in e the p e r f o r m a n c e o f a M I M O channel are also presen te d T h e effects o f these

p a ra m e te rs will be p re s e n te d in te rm s o f sim u latio n results at the end o f this section

2.1 M a t h e m a t ic a l M I M O m o d e l

A flat fa d in g M I M O ch a n n e l w ith M rece iv e a n te n n a s an d N tran sm it antennas

can b e d e s c rib e d th ro u g h the relation below :

w h ere x is th e N x 1 tra n s m itte d signal vector, y is the M x 1 rece iv ed signal vector, n is

tra n s m it a n te n n a to /t h re ce iv e antenna

2.1.1 Capacity via Single Value Decomposition

T h e c a p a c ity o f a M I M O c h an n e l is as follows:

L e t us p re s e n t C in a s im p le r form to find out the key factors co n trib u tin g to the

o p eratio n s: a ro ta tio n o p e ra tio n , a sc a lin g operation and a n o th e r rotation operation

n o n -d ia g o n a l e le m e n ts are z e ro and diagonal ele m e n ts are n o n -n e g a tiv e real num bers

Trang 14

1=1

w e ig h te d input, a n d since the input signal v ector x in ( 1) has unit p o w e r, th e capacity

o f the “ w a te r-f ille d ” M I M O system in (5 ) b ec o m e s

{XWi) as p ro p o s e d in [ I ]

constraint

It can be seen from the w ater-filling alg o rith m ab o v e that the tra n sm itter allocates

T h e re is the q u e s tio n o f ho w to parallelize a M IM O c h a n n e l? T h e an s w e r is as

b elo w F rom S V D w e have:

Trang 15

y = Dx + n (12)

Figure 2 Architecture of MIMO with SVD

F igure 2 s h o w s th e a rc h ite c tu re for a M I M O c o m m u n ic a tio n sy stem using SV D

p o w e r to o th e r ones

2.1.2 Rank and Condition number

Trang 16

T h is section w ill s h o w w hat are the key factors co n trib u tin g to the capacity o f a

M 1M O channel It is s im p le r to focus on tw o s eparate low an d high S N R regim es At low S N R , the p o w e r p olicy will allocate all p o w e r to the stro n g est eig enchannel The

M I M O channel th e n p ro v id es o nly p o w e r gain:

[8], It e x p resses th e d im e n s io n o f rece iv ed signal through the M I M O channel, i.e

e n v iro n m e n t is n o t sc a tte rin g rich enough

2.2 P h y s ic a l M I M O m o d e l

In this sectio n , w e will look into physical e n v iro n m e n ta l factors co n trib u tin g to the M I M O c h a n n e l p e r fo rm a n c e in three main m od e ls: S IM O , M I S O and M IM O W e also find the re la tio n s h ip b etw een the key factors in the m a th e m a tic a l m odel and those

in the p h ysical m o d e l in the case o f M I M O channel In addition, w e only pay attention

to uniform antenna arrays in this section, that is, all a n te n n a s are alig n e d and equally

s ep a ra te d in the tra n s m it and rece iv e a n ten n a arrays

Trang 17

2.2.1 Line o f sight SIM O

T h e m o d e l o f this case is show n in figure 3, in w hich there is no obstacle b etw een the tra n s m itte r and rece iver, hence there is only direct path to the receiver T he antenna separatio n is AtA c, in w h ic h Ac is the rece iv e an ten n a s e p aratio n n o rm a liz e d to the

c arrier w a v e le n g th an d Xc is the w a v ele n g th o f the carrier

T h e c o n tin u o u s - tim e im p u ls e response /?,(t) betw ee n the tran sm it an te n n a and the /' rece iv e a n te n n a is g iv e n as:

L et h b e the ch a n n e l m atrix, h =[h, h 2 hM]', th e n the S IM O ch annel can be

w ritten as

c a u sed by th e tra n s m itte d signal on the receiver

B e c a u s e the d is ta n c e b etw ee n the tra n s m itte r and the rec e iv e r is m u c h larger than

Trang 18

the a n g le o f re c e iv e a n te n n a array and the incident d irec tio n o f tra n s m itte d signal The

s e c o n d term on the rig h t h and o f (21) stands for the d is p la c e m e n t o f the receive

Trang 19

tran sm it an te n n a s a n d only 1 rcceive antenna If <j) is the d iffere n ce angle b etw een the tra n s m it a n te n n a a rray an d the transm itted signal, and AtXc is the sp a c in g betw een anten n as, then the M I S O channel is given as:

and Q = cos <f>.

T h e m a x im u m c a p a c ity can be reached by p e rfo rm in g b e a m f o r m in g algorithm

a c c o rd in g to h T h e c a p a c ity is as given in (23) in w h ich the M I S O c h an n e l does not

s u p p ly any d e g re e - o f - fre e d o m gain

2.2.3 Antenna arrays with only I.OS path

D o e s the M I M O ch annel provide d eg ree - o f - fre e d o m w ith only direct path?

W e are n o w c o n s id e rin g the M IM O ch annel as in figure 4 In this m o d e l, let A, and Ar

be n o rm a liz e d tra n s m it an te n n a spacing and receive a n te n n a sp acin g , respectively Let

the d ista n ce b e tw e e n tw o an te n n a arrays is m u c h larger than the size o f each array, the

substitu tin g (27) into (26) w c have:

d ik — d + (z - 1 )ArAc cos cj)r - (A - 1 )A, Ac cos <t>t (27)

hlk = a e x p - exp( /2^(A' - l)A,i2, ) e x p ( / 2 ^ ( / - l ) A , Q r ) (28)

( 29 )

w h ere

Trang 20

e x p ( - /2 /rA ,Q ) e x p ( - / 2 ; r A , Q )

( 30)

and Q, = cos </>, Q { - cos (/>,.

S in ce the p r o p a g a tio n d is ta n c e is m u c h bigger than the a n te n n a a r r a y s ’ size, the cap a city o f this m o d e l is still as in (23) w hich states that an te n n a arrays w ith only LOS path an d a r r a y s ’s size b e in g m u c h sm aller than the tra n s m is sio n d ista n ce does not

p ro v id e any d e g re e o f freed o m

2.3 K e y p a r a m e t e r s in M I M O ch a n n e l

In the cases a b o v e , it is c lear that although there are m u ltip le an tennas at the transm itter, at the re c e iv e r o r at the both, w e ju s t obtain only the p o w e r gain w hich increases the c a p a c ity lo g a rith m ically This e m e rg e s a q u e s tio n that h o w to obtain

s o m e d e g re e - o f - freed o m , hen ce linear gain in the c a p a c ity ? A n d w hat is the

im p o rtan t factor to a c h ie v e this gain? This section will clarify w h ic h are the key factors in the M I M O c h a n n e l to a c h ie v e d eg ree - o f - fre e d o m gain

L ets look at th e p rim a ry fo rm u la for capacity o f the M I M O ch annel as in (2)

w h ich w o u ld b e c o m e (5) i f th e ch annel m atrix H has m o re than 1 eigen v alu e W e will

find o u t this c o n d itio n in the p h y s ic a l model

2.3.1 Antenna separation [4]

In this p art w e will s tu d y the effect o f a n ten n a sep a ra tio n on the capacity o f

M I M O channel T h e c h a n n e l m o d e l is as in figure 4 w ith a s s u m p tio n that there is only

are co n s ta n t but ca n be a d ju sta b le Tx a n ten n a is placed in the jrz-plane w ith the low er

B ec a u se w e fo cu s on a n te n n a sp a c in g , only L O S path is a n a ly z e d at this situation

Trang 21

Figure 4 A general MI1MO system with ULAs at both the Tx and Rx

U sin g ra y -tr a c in g m e th o d , the au th o rs in |3 | m odel the link as:

( x * \ ( - 2 n

(32)

F o r sim p lic ity , w e c o n s id e r that Tx and Rx an te n n a arrays are parallel T he

re c e iv e v e c to r fro m th e /7th T x an tenna is:

j2 ,T

I A M-ljt

(35)

an d the c h an n e l m a trix is:

T h e m a trix H will have a high rank if its c o lu m n s are u n c o rre la te d , i.e.

Trang 22

F ro m (38) w e see that there are several s o lu tio n s for high rank condition

H o w e v e r w e c h o o s e the one w hich has the sh o rtest an te n n a s p a c in g as in (39)

d e s ig n p a ra m e te r It is clear that A S P d e p en d s on the tra n s m it-re c e iv e distance, the

h o w s e n s itiv e the p e rf o r m a n c e is as the ratio o f the op tim al A S P to cu rren t one

F ig u re 5 b e lo w s h o w s the eig en v alu e s o f m atrix H versu s d iffere n t values o f r|

and fig u re 6 s h o w s the cap a city o f a 3x3 M IM O channel for d iffere n t valu es o f rj At r)=0dB, i.e A S P eq u a ls to A S P op[, three eig en v alu e s are the s a m e w h ic h c o rresp o n d s to the m a x im u m c a p a c ity condition T o o large or too sm all a n te n n a sp a c in g results in

d e g ra d a tio n in ch annel capacity

Trang 23

Figure 5 Eigenvalues for 3x3 IMIMO system as a function of deviation factor in dB for

pure LOS channel

Figure 6 The capacity of MIMO system

Trang 24

2.3.2 Resolvability in the angular domain |X]

T h e sep a ra tio n in d ire c tio n a l co sin e does not e n su re full-rank condition for the

ch annel m atrix H In fact, it can still be ill-conditioned if the a n g u la r condition is not satisfied In o th e r w o r d s , the less alig n ed the spatial s ig n atu res are, the better the condition o f H is T h e a n g le # b e tw e e n tw o spatial s ig n atu res is:

T his p a r a m e te r d e c id e s the co n d itio n o f the m atrix H F o r sim plicity, w e s u ppose

Trang 25

T o s u m up, the a n g le re so lu tio n has to be large en o u g h to e n su re the m a trix ch annel H

b e in g w e ll-c o n d itio n e d for w h a te v e r the a n ten n a sep a ra tio n is It m e a n s that the tra n s m it-re c e iv e d is ta n c e relative to the an tenna a r r a y s ’ size will d e cid e w h e th e r the

m a trix H is w e ll-c o n d itio n e d or not

2.4 A n t e n n a S e le c tio n A lg o r ith m

M I M O s y s te m s are not alw ay s well- co n d itio n ed an d the c h an n e l m atrix has low

w a s te d i f w e use all an alo g chains in a M IM O sy stem , e s p ecially in small

c o m m u n ic a tio n h a n d s e ts w h o s e p o w e r is limited T h e au th o r o f this thesis and his

c o lle a g u e s h a v e p ro p o s e d an antenna selection alg o rith m 17] to re m o v e those inactive

a n te n n a s in r a n k -d e fic ie n t indoor M IM O system s W e will n u m e rically , using sim u latio n , d e m o n s tr a te the c o rre s p o n d e n c e betw ee n rank d e fic ie n c y o f an indoor

M I M O and the e x te n t to w hich the n u m b e r o f receive a n te n n a s can be redu ce d

a n d the classical s in g le -sca tte rin g M IM O model c a n n o t a d e q u a te ly explain this

re ce iv e a n te n n a a rra y s are o bstructed by n e arb y scatterers), has b een p ro p o sed in

w h ic h the ch an n e l m a trix is c h a ra cterized by a p ro d u c t o f tw o statistically independent

c o m p le x G a u s sia n m a tric e s [15] This d o u b le -s c a tte rin g m odel can d e c o u p le (i.e can

c a p tu re s e p arately ) the effects o f ran k -d eficien c y an d spatial fad in g correlation in

Trang 26

M IM O c h a n n e ls M I M O channels with uncorrelated spatial fad in g at both the

keyhole’ c h a n n e ls [1 5], T h e double scattering M IM O c h an n e l m o d e l is

matrices, re s p e c tiv e ly , an d G K and G r are i.i.d R ayleigh fading m a trices on receive and tra n s m it sides, respectively For u n co rrelated fading at both tra n s m it and receive

v e c ( H) = (h[ \ h ‘ | | h\ , ) r

n y - trac in g m o d e l o f the scatterer, for no spatial correlation at both ends, the ra n d o m

instances o f H a b o v e is eq u iv a le n t to

v e c { W ) = Y H2v e c { G ) (48)

entries

Figure 8: An indoor M IM O scenario communicating through a small hole in the wall

between two rooms

T h e e ig e n v a lu e s o f the in-door M IM O channel in F ig u re 8 has been calcula ted in[5] as a fu n c tio n o f the hole dim ension Figure 9 sh o w s w h e n the hole is w id e enough

H ow ever, the rank o f the 4x3 M IM O ch annel d ecre ase s as the hole gets narro w er (toward th e left) an d e v e n tu ally d eg e n e ra te s to rank one

Đ Ạ I H Ọ C Q U Ố C G IA H À N Ọ I TRUNG TÂM TH Ô N G TIN THƯ VIẸN

Trang 27

In a g e n e ra liz e d div e rsity reception system , the rec e iv e r sees several v ersions o f the tra n s m it signal, each ex p eriencing a different c o m p le x -v a lu e d fading coefficient

hj{t) a n d noise n,(t). T o exploit diversity, these signals m ust be c o m b in e d in a gainful

from the selec ted path M a x im a l ratio c o m b in in g (M R C ) m a k e s d ec isio n s b ased on an

op tim al linear c o m b in a tio n o f all path signals

Eigenvalues ot 4,.J MlMG

ỡmđa 1 amda 2 arrtda 3

size of holt* (m)

2 5

Figure 9: Variation of eigenv alues with the width of the hole

Equal gain c o m b in in g (E G C ) sim p ly adds the path signals after they have been

chain H o w e v e r, to d a y a rece iv er n o rm ally has m ore than o n e R F ch ain and a subset

co m b inin g (G S C )

a s s u m in g equal p o w e r on all transm it antennas

C ( / / ; ) = log2 deti / +

co n su m in g

T w o a p p r o x im a tio n te c h n iq u es for an te n n a selection h av e b een p roposed: A t low

SNRs, by a p p ly in g T a y lo r e x p an sio n o f log ( l+.v) to (49) an d n e g le c tin g h ig h e r-o rd e r

a n te n n a s e lec tio n alg o rith m can sim ply m a x im iz e the n o rm o f the (selected) channel

Trang 28

te c h n iq u e ) an d a n te n n a selection for capacity both follow the n o r m -b a s e d strategy In

most c o m m o n b e c a u s e o f its low com p u tatio n al c o m p le x ity an d k n o w n statistics In

an a tte m p t to a c h ie v e near-o p tim a l selection for h ig h -S N R M IM O , G o ro k h o v [14]

d e c re m e n ta l o n e) leads to less c o m p lex ity and has a lm o s t the s am e cap a city as optim al

the p re v io u s ly c h o s e n v e c to rs , and ch o o se the one w h o s e p ro jec tio n has the largest

g re e d y a lg o rith m fo r m a x im iz in g capacity As a result, s u c c e s s iv e selection m ay not be strictly o p tim a l H o w e v e r, sim u latio n s sh o w that the ergo d ic c a p a c ity o f su ccessive selection is in d is tin g u is h a b le from the true o p tim u m A lso, it is s h o w n that successive selec tion p r o v id e s th e full div e rsity o f the original M I M O system

R ecent1 Selection out nf 4x3 MIMO SNR = 10JB 16

15 14 13

size of hole (m)

Figure 10: Capacity versus hole size due to selection of three and two receive antenna

using norm-based incremental algorithm.

A u s e fu l lo w e r b o u n d has been derived in [ 14] for the c a p a c ity o f the selected

N x N M I M O in (49), i.e w h e n Mr = /V, is

C ( H , ) > C( H) + log, det(UrU" ) (50)

side o f (50) is n o n p o s itiv e w h ic h represents the u p p er b o u n d o f the cap a city reduction

loss be

19

Receive S electio n on! uf 4x3 MIMO SNR = 10JB

Trang 29

Lr( H) = - tog: dct(L', U H ) (51)

F ig u re 10 s h o w s the capacity v ersu s hole size (in a w all) in the indoor M 1M O

s c e n a rio in [7] w h e n the full 4x3 M IM O is used (in red), also w h e n three receive

a n te n n a s are s e le c te d (in blue) (i.e //, is a 3x3 selected m a trix ),a n d w hen only two

re c e iv e a n te n n a s are selected (in green) (i.e /7, is a 2x3 selec ted m atrix) It is clear that

to w a rd s the left en d o f the capacity graphs w h ere the hole size is n arrow and the

sy s te m d e g e n e r a te s to rank one, one or even two receive a n te n n a s b e c o m e inactive

a n d th e re fo re can b e elim in a te d with o n ly a v ery small resu ltin g cap a city loss, being

a p p ro x im a te ly o n ly a fraction o f bps/H z As the hole size g ro w s larger allo w in g all three e i g e n m o d e s to survive, the red u ce d n u m b e r o f re ce iv e a n te n n a s is no longer

c a p a b le o f s u p p o r tin g all the e ig en m o d es, h en c e c a p a city loss g ro w s accordingly

1 6

1 2

I 1U n»

3 18 o

F ig u re 11 p lo ts the actual capacity loss due to s e lec tin g three receive antennas

c o m p a re d to the the ore tic al u p p e r b o u n d given in e q u atio n (51) It is im portant to

ob s e rv e fro m this fig u re that to w ard s the left end o f the c a p a city loss curves, the actual

beca u se the u p p e r b o u n d in (51) ass u m e s that the original M I M O has full rank w hile in the region o f n a rro w hole sizes the 4x3 M IM O is s ig n ifican tly ran k -d eficien t before

an tenna selection

Trang 30

C H A PT E R 3

M IM O TE STBE D FOR INDOOR ENVIRONM ENT

3.1 A s u r v e y o f M I M O T e s tb e d designs

T h e M I M O c a p a c ity can be en h a n c e d sig n ifican tly by d e p lo y in g diversity

te c h n iq u e in ric h -s c a tte r enviro n m en t T he capacity will increase linearly with the

n u m b e r o f a n te n n a s i f the channel matrix is full rank a n d w a ter-fillin g is applied to

p o w e r a llo c a tio n po licy So the channel state in fo rm atio n (C S I) b e c o m e s very

im p o rtan t a n d attracts m u c h attention from researchers

3.1.1 The M IM O Testbed at Vienna University

T h e a u th o rs in [9 | have d esigned and im p le m e n te d a M I M O T e stb ed for the

p u rp o s e o f rapid p ro to ty p in g and flexible testing o f alg o rith m s for w ireless tran sm issio n T h is d e s ig n takes a d v an tag e o f the flexibility o f c o m p u te r softw are such

as M a tla b a n d the a v ailab ility o f high sp eed o f D S P / F P G A chips T hus, it has m any

a d v a n c e s in c o m p a r is o n to m o s t p re v io u s designs O n e o f these a d v a n ta g e s o f this testbed is th a t it s u p p o rts m a n y types o f m o d u la tio n b e c a u se the b aseb an d signal

p ro c e s s in g is p e rfo rm e d in M atlab softw are So the alg o rith m ic research e rs do not need to h a v e d e e p k n o w le d g e o f hard w are design

T h e T e s t b e d h as three parts: softw are on PC, F P G A for IF p ro c e s s in g and RF part T h e T e s tb e d ca n su p p o rt up to 4 x 4 M IM O ch annel w ith an y ty p e o f m odulation

th anks to u s in g s o ftw a re to g enera te b aseb an d data on co m p u te r T h e m o d u lated signal after s a m p le d b y a 14-bit D A C at the rate o f up to 25 M s a m p le s /s is shifted to 70 M H z

in te rm e d ia te fre q u e n c y It is then u p -c o n v e rte d to 2 4 G H z frequ en cy At the receiver, arrival signal is d o w n -c o n v e rte d to IF fre q u e n c y to create 7 0 M H z ± 10kH z signal

w h ich th e n is p ro c e s s e d to re c o v e r b aseb an d signal to m e a su re channel T h e testbed

su p p o rts u p to 6.25 M H z o f b a n d w id th an d 50 M B p s o f d ata co in in g in PC

3.1.2 The M IM O Testbed at Brigham Young University

A re s e a rc h te a m at B rig h a m Y o u n g U niversity has d e v e lo p e d a 4 * 4 M IM O

p ro to ty p in g te stb e d that operates at 2.45 G H / [10], Both the tran s m itte r and receiver stations are b a s e d on fixed p o in t D S P m ic ro p ro c e s s o r d e v e lo p m e n t board s and use

c u s to m fo u r -c h a n n e l R F m od u les A c o m p u te r at the tran s m itte r station g en era tes the four d ata s tr e a m s an d passes the sam p led signals to the D S P board Each D SP

p ro c e s s o r p u ls e - s h a p e d filters each c o m p o n e n t o f the c o m p le x signal and sends the

b a s e b a n d sig n al to a digital u p -converter At ihe re c e iv e r station, eac h D S P processo r

p e rfo rm s m a tc h e d filtering and passes the filtered o u tp u ts to a co m p u te r T h e co m p u te r

Ngày đăng: 25/03/2015, 11:04

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN