Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.. Noll, Viscometric Flows of Non-Newtonian Fluids, Springer
Trang 1546 Answers
CHAPTER 4
CHAPTERS
Trang 2Answers 547
Trang 3548 Answers
CHAPTER 6
Trang 4Answers 549
CHAPTER 7
Trang 51 Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1962
2 Astarita, G and G Marrucci, Principles of Non-Newtonian Fluid Mechanics,
McGraw-Hill Book Company (UK) limited, Maiden Head, England, 1974
3 Bird, R.B., R.C Armstrong, O Hassger, Dynamics of Polymeric Liquids, Vol 1: Fluid Mechanics, Wiley & Sons, New York, 1977.
4 Coleman, B.D, Markowitz, H and W Noll, Viscometric Flows of Non-Newtonian Fluids,
Springer-Verlag, New York, 1966
5 Eringen, A.C., Mechanics ofContinua, Wiley, New York, 1967.
6 Ferry, J.D., Viscoelastic Properties of Polymers, Wiley, 2nd edition, New York 1970.
7 Fung, Y.C., First Course in Continuum Mechanics, Prentice Hall, Englewood Cliffs,
New Jersey, 1977
8 Fung, Y.C., Foundation of Solid Mechanics, Prentice Hall, Englewood Cliffs, 1965.
9 Green, A.E., and W Zerna, Theoretical Elasticity, Oxford University Press, Fair Lawn,
New Jersey, 1954
10 Leigh, D.C., Nonlinear Continuum Mechanics, McGraw-Hill, New York, 1978
11 Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, Prentice Hall,
Englewood Cliffs, New Jersey, 1969
12 Schlichting, H., Boundary Layer Theory, 7th edition, McGraw-Hill, New York, 1979.
13 Showater, W.R., Mechanics of Non-Newtonian Fluids, Pergamon Press, UK/USA, 1978.
550
Trang 6References 551
14 Sokolnikoff, I.S Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York,
1956,
15 Sokolnikoff, I S., Tensor Analysis: Theory and Applications, John Wiley & sons, Inc.,
New York, 1951
16 Timoshenko, S.P and Goodier, J.N., Theory of Elasticity, 3rd ed., McGraw-Hill,
New York, 1970
17 Tniesdell, C, The Elements of Continuum Mechanics, Springer-Verlag, Inc., New York,
1966
18 Truesdell, C., and W Noll, The Non-linear Field Theories of Mechanics, Springer-Verlag, New York, 1992
19 Yih, C.S Fluid Mechanics, a Concise Introduction to the Theory, McGraw Hill, 1969,
West River Press, 1988
Trang 7Acceleration of a particle Cauchy's stress principle, 173-174
in cylindrical coordinates, 88 Cayley-Hamilton theorem, 323
in rectangular coordinates, 87 Channel flow, 371-372,523
in spherical coordinates, 89 Characteristic equation, 39
Acoustic wave, 404 Choked flow, 417
Airy's stress function, 276,282 Co-rotational derivatives, 508
Anisotropic elastic solid, 219,293 Compatibility conditions
monoclinic, 299,312 for finite deformation, 144
orthotropic, 301,311 for infinitesimal strain, 114
plane of material symmetry, 296 for rate of deformation, 119
transversely isotropic, 303,308 Complex shear modulus, 470
Antisymmetric tensor, 35 Compliance matrix, 294
Apparent viscosity, 513,515-516 Compressible flow
Axial vector, 36,94 converging nozzle, 414
converging-diverging nozzle, 416 Barotropic flow, 409 one-dimensional, 412
Bernoulli's equations, 392 Compressible Newtonian fluid, 401 BKZ fluid, 503 Compressive stresses, 177
Body force, 187 Conjugate pairs, 207
Boundary layer, 399 Conservation of mass, 112,147,349,437 Bulk modulus, 220,228 Continuum mechanics, 79
Bulk viscosity, 358 Contraction of indices, 9
Control volume, 433-434 Cauchy stress tensor, 202,319,321 Convected Maxwell fluid, 512
Cauchy stress vector, 174 Conversion of elastic constants, 230 Cauchy's equations of motion, 189 Corotational Jeffrey fluid, 514
552
Trang 8index 553
Couette flow, 380,389,526 area change, 145
Creep experiment, 465 isotropic elastic material, 322
Creep function, 466 volume change, 146
Current configuration as reference con- Finite deformation tensor, 121,128,134, figuration, 476 136,138,141,151,153,155-156,206,318-321
in other coordinates, 149 Deformation gradient, 120,126,317 Finite elastic deformation
Differential type constitutive equations bending of a bar, 327
incompressible fluids, 503 extension of incompressible solid, 324 Dilatation, 105,220 simple shear of an isotropic material, 325 Dilatational wave, 240 torsion-tension, 331
Displacement field, 92 First coefficient of viscosity, 357
Displacement gradient, 95 First Jaumann derivative, 508
Dissipation functions, 383 First Piola Kirchhoff stress tensor, 202
Divergence theorem, 430 Flow
Dual vector, 36,94 channel flow, 372,523
Dummy index, 3 Couette, 380,389,526
Dyadic product, 21 Hagen-Poiseuille, 374
irrotational, 390 Eigenvalues of a tensor, 38 oscillating plate, 381
Eigenvectors of a tensor, 38 parallel, 361
Einstein's summation convention, 4 plane Couette flow, 371
Elastic constants plane Couette of two layers, 377
table of, 231 simple shearing, 82
Elastic medium under large deformation, 319 uni-directional, 361
Elasticity, 217 Fluid flow
Elasticity tensor, 221 boundary conditions, 365
components of, 225 Fluid pressure, 357
Energy equation, 208,402 Fluids
Newtonian fluid, 384 definition of, 348
Enthalpy, 402 Frame
Entropy inequality, 209 change of frame, 314,317,496
Equations of hydrostatics, 350 frame-indifferent quantities, 315
Equations of motion, 187 principle of material frame indifference, 319
in cylindrical coordinates, 190 Free index, 5
in reference configuration, 201
in spherical coordinates, 190 Gauss's theorem, 431
Equilibrium equations, 189 Generalized linear Maxwell fluid
Equivoluminal wave, 242 continuous spectrum, 474
Euler's equation of motion, 391 discrete relaxation spectra, 471
Eulerian description, 84 integral form, 473
Eulerian strain tensor, 141,319 Global principle, 427
Extra stress, 464 Green's deformation tensor, 129
Green's theorem, 427 Finger deformation tensor, 138
Finite deformation, 121
Trang 9554 Index
Hagen-Poiseuille flow, 374 Lame's constants, 226
History of relative deformation tensor, 486 Laminar flow, 370
Homogeneous media, 219 Left Cauchy-Green tensor, 138,151,155-Hookean elastic solid 156,318,321
linear, 220 Linear anisotropic elastic solid, 293 nonlinear, 322 Linear elastic solid, 220
Hugoniot equation, 413 Linear isotropic elastic solid, 225,306-307 Hydrostatic pressure, 349 Linear Maxwell fluid, 464,469,475 Hydrostatic stress, 179,230 Linear transformation, 11
Linearly viscous fluid, 356 Identity tensor, 23 Local principle, 427
Incompressible elastic material, 232 Longitudinal wave, 239
Incompressible material, 113,147 Loss modulus, 471
Incompressible Newtonian fluid, 359
Incompressible simple fluid, 497 Mach number, 411
Indeterminate pressure, 359 Material coordinates, 80, 83
Infinitesimal deformations, 94 Material derivative, 85
Infinitesimal rotation tensor, 106 Material description, 83
Infinitesimal strain tensor, 98 Material volume, 433
Inhomogeneous media, 219 Maximum shearing stress, 182
Integral type constitutive equation Maxwell element, 464
linear, 473 Mean normal compressive stress, 357 nonlinear, 498,503 Memory function, 475
Irrotational flow Modulus of elasticity, 218,228
as solution of Navier-Stokes equation, 394 Monoclinic elastic solid, 299-300,312 inviscid compressible fluid, 408 Moving control volume, 449
inviscid fluid, 391 Moving frames of reference, 447
Irrotational wave, 240
Isentropic pressure density relation, 406 Navier's equations
Isochoric condition, 324 cartesian coordinates, 235
Isotropic elastic solid, 219,225,306 cylindrical coordinates, 236
Isotropic function, 322,502 spherical coordinates, 236
Isotropic function(al), 497 Navier-Stokes equations
Isotropic tensor, 225 cylindrical coordinates, 364
incompressible fluid, 360 Jaumann derivative of stress, 507 spherical coordinates, 365
Newtonian fluid, 355 Kelvin's problem, 190 Non-Newtonian fluid, 462
Kinematic equations of motion, 80 Normal strains, 100
Kinematic viscosity, 396 Normal stress differences, 505-506 Kronecker delta, 6 Normal stress functions, 500,514-516,522
Nth Jaumann derivative, 508 Lagrange multiplier, 184
Lagrange stress tensor, 196 Objective quantities, 315
Lagrangian description, 84 Objective rate of stress, 506
Lagrangian strain tensor, 134,136,206,319 Objective scalar, vector, tensor, 316
Trang 10index 555
Oldroyd 3-constant fluid, 515 Quotient rule, 34
Oldroyd 4-constant fluid, 516
Oldroyd fluid A, 515 Rate of change of a material element, 106 Oldroyd lower convected derivative, 508 Rate of deformation tensor, 108
Oldroyd upper convected derivative, 510 Rate of extension, 109
Orthogonal tensor, 24 Rate of heat flow, 207
Orthotropic elastic solid, 301,311 Rate of shear, 110
Rate type constitutive equations, 511 Particle in a continuum, 79 Recursive formulas
Pathline, 80,367 for Rivlin-Ericksen tensor, 491
Permutation symbol, 7 Reference configuration, 158
Phase angle, 471 Reference description, 84
Phase velocity, 239 Reference time, 79
Piezometric head, 362,374 Reflection of plane elastic waves, 248
Piola Kirchhoff stress tensor, 195,319 Refraction index, 250
first Piola Kirchhoff, 196,201 Relative deformation gradient, 159,477
second Piola Kirchhoff, 197,206,320 Relative deformation tensor, 478
Plane equivoluminal wave, 242 cylindrical coordinates, 482
Plane irrotational wave, 238 rectangular coordinates, 480
Plane of material symmetry, 296,299 spherical coordinates, 485
Plane Poiseuille flow, 372 transformation law in a change of frame, 494 Plane strain, 275 Relative Finger deformation tensor, 479
Plane strain in polar coordinates, 281 Relative left Cauchy-Green tensor, 159,479 Plane stress, 281 Relative left stretch tensor, 478
Poisson's ratio, 219,228 Relative Piola deformation tensor, 479
Polar decomposition theorem, 124,478 Relative right Cauchy-Green tensor, 159, Principal directions 479,499
strain, 105 Relative right stretch tensor, 478
tensor, 43 Relative rotation tensor, 478
Principal planes, of stress, 182 Relaxation function, 466
Principal Scalar invariants, 45 Reynolds number, 370
Principal strain, 105 Reynolds transport theorem, 435
Principal stresses, 182 Right Cauchy-Green tensor, 128,153, 155, Principal stretch, 122 318,320
Principal values, 43 Rigid body motion, 93
Principle of conservation of energy, 454 Rivlin's universal relation, 334
Principle of conservation of mass, 112,147, Rivlin-Ericksen fluid
349,437 incompressible of complexity n, 503
Principle of linear momentum, 187,440 Rivlin-Ericksen tensor, 486,488-490
Principle of material frame indifference, 319 in terms of velocity gradient, 491
Principle of moment of momentum, 178,451 transformation laws, 496
Principle of superposition, 238
Pure bending of a beam, 269 Second order fluid, 504
Pure bending of a curved beam, 285 Second Piola Kirchhoff stress tensor, 197, Pure stretch, 121 206,320
Second-order tensor, 11
Trang 115S6 index
Shear modulus, 220,228 Tanner and Simmons network model, 501 Shear strain, 100 Tensile stresses, 177
Shear stress function, 506,513,522 Tensors
Shear wave, 242 definition of, 11
Shearings, 110 inverse of, 23
Simple bending, 269 product of, 18
Simple extension, 254 sum of, 17
Simple shear stress state, 229 trace of, 22
Simple shearing motion, 82 transpose of, 20
Simply-connected region, 116 Thick-walled pressure vessel, 284
Snell's law, 251 Thickness stretch,-shear vibration, 251 Spatial coordinates, 84 Torricelli's formula, 394
Spatial description, 83 Torsion of a circular cylinder, 258,331 Speed of sound, 406 Torsion of a noncircular cylinder, 266 Spherical pressure vessel, 291 Transformation laws
Spin tensor, 108, 111 of tensors, 30,32
St Venant's principle, 256,262 of vectors, 28
Stagnation enthalpy, 402 Transformation matrix, 26
Stagnation pressure, 410 Transversely isotropic elastic solid, 303,308 Steady and unsteady flow, 370 Turbulent flow, 370
Stiffness matrix, 294 Two point components, 155-156
Storage modulus, 471 for deformation gradient, 151
Stored energy function, 222 Two point components
Strain energy function, 222,293-294 for relative deformation gradient, 483 Strain tensor (infinitesimal), 98
Streakline, 368 Uniaxial stress, 228
Streamline, 366 Unit elongation, 99,137
Stress boundary condition, 192 Unit step function, 467
Stress concentration, 287 Unsteady flow, 370
Stress power, 203
Stress relaxation experiment, 466 Vibration of an infinite plate, 251
Stress tensor (Cauchy), 174 Viscoelastic fluid
components of, 176 linear, 464
normal stresses, 177 nonlinear, 476
shearing stresses, 177 Viscometric flow, 516
symmetry of, 178 Viscometric functions, 522
tangential stresses, 177 Viscosity, 357
Stress vector, 173 Viscosity function, 500
Stresses in viscometric flow, 520 Viscous stress tensor, 356
Stretch, 95,122 Vorticity tensor, 112
Stretch tensor, 124,126,128 Vorticity transport equation, 396
Stretching, 109 Vorticity vector, 387
Summation convention, 3
Surface tractions, 192 Young's modulus, 218,228
Symmetric tensor, 35