1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

AUTOMATION & CONTROL - Theory and Practice Part 7 docx

25 265 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,88 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

filter -pass filter figure the wave digital ow-pass filter is s... The valunsformation of thepass filter presen cheme of the band -A52*N14; N14-A51*N14; N10=N9;N12=N11log10absh ging in t

Trang 1

he program for th

llows, and the fr

ogram for comp

ructure in the figu

G A

G C G

A

G C G

A

0 1 1

2 2

0 1

0 1 2

3

2 3 4

ure 4

wave digital low276524;A3=0.18280; N8=0; N10=0; X

.

R L R

B

R L G

A

G C

3 3

4 4

1 2

1 2 3

4

3 4 5

52 4

2 447408

026493

Fig

5

Asfilt

A3chahigpro

for i=1:1:200 XN1=A1*XN XN3=N6-A BN4=XN4 BN3=XN3 BN2=XN2 BN1=XN1 N1=XN*A N5=BN3-A N9=N10-A YN(i)=2*N N2=N1;N4=

end [h,w]=freqz(YN Plot(w,20*log10

g 5 Frequency re

Design of the

s a second exampter for n=5, Amax

=0.182, B4=0.192anging the valuegh-pass filter in ogram we also ha

N-A1*N2+N2;

A3*XN2-A3*N6;

4-A51*XN4+2*N13-B4*XN4-B4*BN42-A3*XN2+BN3+N-BN2*XN2-B2*BNA1-A1*N2+BN1;

A3*XN2-A3*N6;

A51*XN4-A51*N1N10-A51*XN4-A5

=N3;N6=N5;N8=NN,1,200)

XN2=XN1+N4 XN4=XN3+N0-A51*N10-A52*N4;

N6-A3*N6;

N2;

N3=BN1+BN2 N7=BN3+BN410-A52*N10;

hebychev wave

DF A1=0.223, B2=MATLAB programhebychev low-pailter from the prN7; N10= -N9

digital

=0.226,

m and

ss and evious

Trang 2

v low-pass and hi

Cauer WDF

rder ladder LC retained from table

dB and Ωs=2.0000

filter -pass filter figurethe wave digital

ow-pass filter is s 114, 1979) (C 05

ed by digital strfilter of the 5th o

shown

550 for

ructure rder is

Fig

Fig WiwapreinpC(1C(2N1R(3R(5K(4A(

A(

for

g 8 Discrete reali

g 9 Structure of tith the assistanceave digital filter esented in Figureput data of the L1)=2.235878; C(3)2)=0.096443; C(4)14=0; G(1)=1; G(23)=R(2)+1/(C(2)+

5)=R(4)+1/(C(4)+

4)=(L(4)*C(4)-1)/

(3)=G(3)/(G(3)+C(51)=2*G(5)/(G(5)

r i=1:1:200 XN2=A(1)*XN1+

XN4=N8-A(3)*X BN5=XN5-A(51) BN4 =XN4-B(4)*

BN3 =XN3-A(3)*

BN2 =XN2-B(2)*

N1 =A(1)*XN1-A N5=-K(2)*N3+K N9=BN4+BN5;

el and serial LC ci

ass filter n=5

g MATLAB progrand A52 The atte

m was obtained ined from the cat

=2.092084; L(2)=0

=1; N2=0; N4=0; N

=1/G(2);

G(3)=1/R(3); GG(5)=1/R(5);

A(1)=G(1)/G(2);

4)=R(4)/R(5);

(52)=2/(G(5)+C(5 XN3=XN2+N XN5=XN4+N12;

51)*N14-A(52)*NA(3)*N8;

N3=BN2*BN3;

N7=BN4-A(3)*XN1=N10-N9*K(4)+N

ircuit

ram we can calcuenuation of the lofrom the structualogue of the Cau981174; L(4)=0.88N6=0; N8=0; N10G(4)=G(3)+C(3);

K(2)=(L(2)*C(2)-1 B(2)=R(2)/R(3);

5)+1);

N6;

; 14*;

N3-A(3)*N8;

N12*K(4);

ulate coefficientsow-pass Cauer fure in the Figure uer filter (Saal 19789139;

=0; N12=0;

R(4)=1/G(4);

1)/(L(2)*C(2)+1);

of the ilter is

9 The 79.)

Trang 3

v low-pass and hi

Cauer WDF

rder ladder LC retained from table

dB and Ωs=2.0000

filter -pass filter figure

the wave digital

ow-pass filter is s 114, 1979) (C 05

ed by digital strfilter of the 5th o

shown

550 for

ructure rder is

Fig

Fig WiwapreinpC(1C(2N1R(3R(5K(4A(

A(

for

g 8 Discrete reali

g 9 Structure of tith the assistanceave digital filter esented in Figureput data of the L1)=2.235878; C(3)2)=0.096443; C(4)14=0; G(1)=1; G(23)=R(2)+1/(C(2)+

5)=R(4)+1/(C(4)+

4)=(L(4)*C(4)-1)/

(3)=G(3)/(G(3)+C(51)=2*G(5)/(G(5)

r i=1:1:200 XN2=A(1)*XN1+

XN4=N8-A(3)*X BN5=XN5-A(51) BN4 =XN4-B(4)*

BN3 =XN3-A(3)*

BN2 =XN2-B(2)*

N1 =A(1)*XN1-A N5=-K(2)*N3+K N9=BN4+BN5;

el and serial LC ci

ass filter n=5

g MATLAB progrand A52 The atte

m was obtained ined from the cat

=2.092084; L(2)=0

=1; N2=0; N4=0; N

=1/G(2);

G(3)=1/R(3); GG(5)=1/R(5);

A(1)=G(1)/G(2);

4)=R(4)/R(5);

(52)=2/(G(5)+C(5 XN3=XN2+N XN5=XN4+N12;

51)*N14-A(52)*NA(3)*N8;

N3=BN2*BN3;

N7=BN4-A(3)*XN1=N10-N9*K(4)+N

ircuit

ram we can calcuenuation of the lofrom the structualogue of the Cau981174; L(4)=0.88N6=0; N8=0; N10G(4)=G(3)+C(3);

K(2)=(L(2)*C(2)-1 B(2)=R(2)/R(3);

5)+1);

N6;

; 14*;

N3-A(3)*N8;

N12*K(4);

ulate coefficientsow-pass Cauer fure in the Figure uer filter (Saal 19789139;

=0; N12=0;

R(4)=1/G(4);

1)/(L(2)*C(2)+1);

of the ilter is

9 The 79.)

Trang 4

Cauer filter (Saa

A With the tran

lues of the band-p

g 11.Tolerance sc

51)*XN5-A(52)*NN6=N5;N8=N7;N200); plot(w,20*lbtained by chang11; N14=-N13 In

*XN5-A(51)*N14-response of the C

Cauer band-pa

and-pass filter thnormalized low-p

l 1979) The valunsformation of thepass filter presen

cheme of the band

-A(52)*N14;

N14-A(51)*N14;

N10=N9;N12=N11log10(abs(h))) ging in the progra

n Figure 10 the

Cauer low-pass an

ass filter

hat accomplish thpass filter for C03ues of the normali

e low-pass filter nted in Figure 12B

to the band-pass

B

=0;

=-N3; N6=-N5; N8ow-pass and hig

ve digital filter

me given in Figuobtained from theter are shown in

FigaftSertra

Figpa 

 

   

g 12 A) LC lowter impedance trarial-parallel resoansformed into p

g 13 Impedancerallel resonant cir

w-pass Cauer filteansformation

onant circuit in parallel-parallel re

e transformation rcuit

a

er, B) LC band-p

the longitudinaesonant circuit, fi

u  14

C aC

allel resonant LC

A

L

A A L A

c c

1

2

1 2 2

4

LA LA

2 1

C A

C A

1 2

u

 2

u

 2

C) LC band-pas

e figure 12B) ctions (5) up to (11

C circuit to the pa

s filter

can be 1)

arallel-(5)

(6)

(7) (8) (9)

Trang 5

Cauer filter (Saa

A With the tran

lues of the band-p

g 11.Tolerance sc

51)*XN5-A(52)*N

*XN5-A(51)*N14-N6=N5;N8=N7;N200); plot(w,20*lbtained by chang11; N14=-N13 In

response of the C

Cauer band-pa

and-pass filter thnormalized low-p

l 1979) The valunsformation of the

pass filter presen

cheme of the band

-A(52)*N14;

N14-A(51)*N14;

N10=N9;N12=N11log10(abs(h)))

ging in the progra

n Figure 10 the

Cauer low-pass an

ass filter

hat accomplish thpass filter for C03ues of the normali

e low-pass filter nted in Figure 12B

to the band-pass

B

=0;

=-N3; N6=-N5; N8ow-pass and hig

ve digital filter

me given in Figuobtained from theter are shown in

FigaftSertra

Figpa 

 

   

g 12 A) LC lowter impedance trarial-parallel resoansformed into p

g 13 Impedancerallel resonant cir

w-pass Cauer filteansformation

onant circuit in parallel-parallel re

e transformation rcuit

a

er, B) LC band-p

the longitudinaesonant circuit, fi

u  14

C aC

allel resonant LC

A

L

A A L A

c c

1

2

1 2 2

4

LA LA

2 1

C A

C A

1 2

u

 2

u

 2

C) LC band-pas

e figure 12B) ctions (5) up to (11

C circuit to the pa

s filter

can be 1)

arallel-(5)

(6)

(7) (8) (9)

Trang 6

gure 8 The coeffi

gure 8 can be obta

K1=0

K3=0

and-pass filter afittances Yi and im

G1=G0-+Y

R

R3=R2+1/

s of the parallel autput of the band

he load resistor R

G

G G

A R B

R Z R B

G A

G Y G A

1 1 2

1 2 2 3

2 3 3 41

3 4 42

3 4

22

L C i i

L C i

K

0.543105 K2=0.870278 K4=

fter the impedancmpedances Ri we

Y1=4.39611

R2=R1+1/Y2=0.46/Y3=0.581104 and serial adaptod-pass filter the pa

1 7208 3

v

 1 2

v

 1 2

R1=0.227432

63853

G3=1.720862 ors of the wave darallel dependent

.

.

.

of the

of each nted in nted in

ave digital filte

ucture of the Butt

structure of the wction of the paral end of the struct

ad resistance RL=dent adaptor

er

terworth wave di

wave digital filterllel and serial adture must be conn

=1 In case of n e

gital filter

r The daptors nected even at

Trang 7

gure 8 The coeffi

gure 8 can be obta

resonant circuit icients Ki i=(1, 2,

ained by followin

K1=0

K3=0

and-pass filter afittances Yi and im

G1=G0-+Y

R

R3=R2+1/

s of the parallel autput of the band

he load resistor R

G

G G

A R

B

R Z R

B

G A

G Y G

1 1

2

1 2 2

3

2 3 3

41

3 4 42

3 4

22

L C i i

L C i

K

0.543105 K2=0.870278 K4=

fter the impedancmpedances Ri we

Y1=4.39611

R2=R1+1/Y2=0.46/Y3=0.581104 and serial adaptod-pass filter the pa

4 4

1 7208 3

v

 1

2

v

 1

R1=0.227432

63853

G3=1.720862 ors of the wave d

arallel dependent

.

.

.

of the

of each nted in nted in

ave digital filte

ucture of the Butt

structure of the wction of the paral end of the struct

ad resistance RL=dent adaptor

er

terworth wave di

wave digital filterllel and serial adture must be conn

=1 In case of n e

gital filter

r The daptors nected even at

Trang 8

In tables 1-5 are the elements of the Butterworth wave digital filters for various attenuation

Amax in the pass-band and n=3, 4, 5, 6 and 7 The tables was designed for sampling

frequency fs=0.5

Table 1 Elements of the Butterworth WDF N=3, Amax in dB

Table 2 Elements of the Butterworth WDF N=4, Amax in dB

Table 3 Elements of the Butterworth WDF N=5, Amax in dB

0.1 0.6764 0.3694 0.3210 0.5690 0.9679 0.2 0.6568 0.3424 0.2924 0.5385 0.9599 0.3 0.6449 0.3268 0.2760 0.5200 0.9545 0.4 0.6364 0.3157 0.2645 0.5067 0.9503 0.5 0.6295 0.3071 0.2556 0.4961 0.9468 0.6 0.6239 0.3000 0.2484 0.4874 0.9437 0.7 0.6190 0.2941 0.2423 0.4798 0.9409 0.8 0.6147 0.2889 0.2369 0.4732 0.9385 0.9 0.6109 0.2843 0.2326 0.4673 0.9362 1.0 0.6074 0.2802 0.2281 0.4620 0.9431

Amax A1 B2 A3 B4 A51 A52 0.1 0.7022 0.3784 0.2876 0.3188 0.6021 0.9815 0.2 0.6872 0.3658 0.2655 0.2951 0.5781 0.9722 0.3 0.6782 0.3531 0.2532 0.2813 0.5636 0.9742 0.4 0.6716 0.3441 0.2446 0.2717 0.5530 0.9718 0.5 0.6664 0.3371 0.2380 0.2642 0.5446 0.9699 0.6 0.6621 0.3313 0.2325 0.2580 0.5376 0.9682 0.7 0.6584 0.3264 0.2280 0.2529 0.5317 0.9667 0.8 0.6551 0.3222 0.2240 0.2484 0.5264 0.9653 0.9 0.6522 0.3184 0.2205 0.2444 0.5217 0.9641 1.0 0.6495 0.3149 0.2173 0.2408 0.5174 0.9629

able 4 Elements o

Amax A1 0.1 0.74 0.2 0.76 0.3 0.73 0.4 0.72 0.5 0.72 0.6 0.72 0.7 0.72 0.8 0.71 0.9 0.71 1.0 0.71

of Chebychev WD

0.2468 0.2229 0.2422 0.2184 0.2384 0.2145 0.2350 0.2112 0.2321 0.2083 0.2294 0.2056

arious attenuatiompling frequency f

filter

n Amax

fs=0.5

Trang 9

In tables 1-5 are the elements of the Butterworth wave digital filters for various attenuation

Amax in the pass-band and n=3, 4, 5, 6 and 7 The tables was designed for sampling

frequency fs=0.5

Table 1 Elements of the Butterworth WDF N=3, Amax in dB

Table 2 Elements of the Butterworth WDF N=4, Amax in dB

Table 3 Elements of the Butterworth WDF N=5, Amax in dB

0.4 0.5962 0.3056 0.4682 0.9133 0.5 0.5867 0.2941 0.4545 0.9068 0.6 0.5789 0.2846 0.4331 0.9012 0.7 0.5721 0.2767 0.4334 0.8963 0.8 0.5662 0.2698 0.4249 0.8918 0.9 0.5609 0.2637 0.4174 0.8876 1.0 0.5561 0.2583 0.4105 0.8838

0.1 0.6764 0.3694 0.3210 0.5690 0.9679 0.2 0.6568 0.3424 0.2924 0.5385 0.9599 0.3 0.6449 0.3268 0.2760 0.5200 0.9545 0.4 0.6364 0.3157 0.2645 0.5067 0.9503 0.5 0.6295 0.3071 0.2556 0.4961 0.9468 0.6 0.6239 0.3000 0.2484 0.4874 0.9437 0.7 0.6190 0.2941 0.2423 0.4798 0.9409 0.8 0.6147 0.2889 0.2369 0.4732 0.9385 0.9 0.6109 0.2843 0.2326 0.4673 0.9362 1.0 0.6074 0.2802 0.2281 0.4620 0.9431

Amax A1 B2 A3 B4 A51 A52 0.1 0.7022 0.3784 0.2876 0.3188 0.6021 0.9815

0.2 0.6872 0.3658 0.2655 0.2951 0.5781 0.9722 0.3 0.6782 0.3531 0.2532 0.2813 0.5636 0.9742 0.4 0.6716 0.3441 0.2446 0.2717 0.5530 0.9718 0.5 0.6664 0.3371 0.2380 0.2642 0.5446 0.9699 0.6 0.6621 0.3313 0.2325 0.2580 0.5376 0.9682 0.7 0.6584 0.3264 0.2280 0.2529 0.5317 0.9667 0.8 0.6551 0.3222 0.2240 0.2484 0.5264 0.9653 0.9 0.6522 0.3184 0.2205 0.2444 0.5217 0.9641 1.0 0.6495 0.3149 0.2173 0.2408 0.5174 0.9629

able 4 Elements o

Amax A1 0.1 0.74 0.2 0.76 0.3 0.73 0.4 0.72 0.5 0.72 0.6 0.72 0.7 0.72 0.8 0.71 0.9 0.71 1.0 0.71

of Chebychev WD

0.2468 0.2229 0.2422 0.2184 0.2384 0.2145 0.2350 0.2112 0.2321 0.2083 0.2294 0.2056

arious attenuatiompling frequency f

filter

n Amax

fs=0.5

Trang 10

Amax A1 B2 A3 B4 A51 A52

Table 7 Elements of Chebychev WDF N=5, Amax in dB

Table 8.Elements of Chebychev WDF N=7, Amax in dB

Table 9.Elements of Chebychev WDF N=9, Amax in dB

11 Tables of Cauer wave digital filter

In tables 10-12 are the elements of Cauer wave digital filters for various attenuation Amax in

the pass-band and N=3, 5 and 7 The tables was designed for sampling frequency fs=0.5

g 18 Frequency r

C 0.0004 0.0017 0.0039 0.0109 0.0279 0.0436 0.0988 0.1773 0.2803 1.2494

able 10 Elements

Amax 0.0017 0.0039 0.0109 0.0279 0.0436 0.0988 0.1773 0.2803 1.2494

able 11 Elements

Amax As 0.0004 43.5 0.6 0.0017 49.5 0.6 0.0039 53.0 0.6 0.0109 57.5 0.5

response and stru

N=3, Ωs=4.8097, K2 B2 A3 0.399 0.330 0.373 0.311 0.343 0.290 0.318 0.272 0.306 0.264 0.288 0.251 0.277 0.243 0.270 0.237 0.256 0.221

N=5, Ωs=2.000, K2

0.3521 0.4838 0.3240 0.4464 0.3093 0.4274 0.2924 0.4064

A32 0.9629 0.9374 0.9160 0.8803 0.8365 0.8114 0.7573 0.7110 0.6699 0.4999

Trang 11

Amax A1 B2 A3 B4 A51 A52

Table 7 Elements of Chebychev WDF N=5, Amax in dB

Table 8.Elements of Chebychev WDF N=7, Amax in dB

Table 9.Elements of Chebychev WDF N=9, Amax in dB

11 Tables of Cauer wave digital filter

In tables 10-12 are the elements of Cauer wave digital filters for various attenuation Amax in

the pass-band and N=3, 5 and 7 The tables was designed for sampling frequency fs=0.5

g 18 Frequency r

C 0.0004 0.0017 0.0039 0.0109 0.0279 0.0436 0.0988 0.1773 0.2803 1.2494

able 10 Elements

Amax 0.0017 0.0039 0.0109 0.0279 0.0436 0.0988 0.1773 0.2803 1.2494

able 11 Elements

Amax As 0.0004 43.5 0.6 0.0017 49.5 0.6 0.0039 53.0 0.6 0.0109 57.5 0.5

response and stru

N=3, Ωs=4.8097, K2 B2 A3 0.399 0.330 0.373 0.311 0.343 0.290 0.318 0.272 0.306 0.264 0.288 0.251 0.277 0.243 0.270 0.237 0.256 0.221

N=5, Ωs=2.000, K2

0.3521 0.4838 0.3240 0.4464 0.3093 0.4274 0.2924 0.4064

A32 0.9629 0.9374 0.9160 0.8803 0.8365 0.8114 0.7573 0.7110 0.6699 0.4999

Trang 12

Fig 20 Parallel and serial adaptors deposited in simulink browse library

The simulink model of the fifth order filter in the figure 4 corresponds to the realization of a wave digital filter application on TMS320C6711 DSK using Embedded Target for Texas Instruments TMS320C6000 DSP Platform The model of the filter, figure 21, was created by means of serial and parallel block that were added to the window simulink library browser

In the output and input of WDF were added ADC and DAC convertors of the TMS320C6711 that are in the simulink library browser, Embedded Target for TI C6000 DSP and C6711DSK board support

Fig 21 Realization of fifth order wave digital filter by TMS320C6711 simulink

This project created in code composer studio can be seen in figure 22 and can run on the DSPC6711

Trang 13

Fig 20 Parallel and serial adaptors deposited in simulink browse library

The simulink model of the fifth order filter in the figure 4 corresponds to the realization of a wave digital filter application on TMS320C6711 DSK using Embedded Target for Texas Instruments TMS320C6000 DSP Platform The model of the filter, figure 21, was created by means of serial and parallel block that were added to the window simulink library browser

In the output and input of WDF were added ADC and DAC convertors of the TMS320C6711 that are in the simulink library browser, Embedded Target for TI C6000 DSP and C6711DSK board support

Fig 21 Realization of fifth order wave digital filter by TMS320C6711 simulink

This project created in code composer studio can be seen in figure 22 and can run on the DSPC6711

Ngày đăng: 10/08/2014, 21:23

TỪ KHÓA LIÊN QUAN