Determine the principal stresses and the maximum shearing stress at point 1 located as shown on top of the shaft.. Knowing that the mechanic applies a vertical 24-lb force at 4, determin
Trang 17.47 Solve Prob 7.25, using Mohr’s circle
7.25 A 400-tb vertical force is applied at D to a gear attached to the solid one-inch diameter shaft AB Determine the principal stresses and the maximum shearing stress
at point 1 located as shown on top of the shaft
Stvess at peist H is zero
Gee 24.AUE ksi, Gy O, Tự 7 HO? kei
Trang 2PROBLEM 7.48 7.48 Solve Prob 7.26, using Mohr’s circle
7.26 A mechanic uses a crowfoot wrench to loosen at bolt at E Knowing that the mechanic applies a vertical 24-lb force at 4, determine the principal stresses and the maximum shearing stress at point H located as shown on top of the 3 - in diameter
Torsion: oe VY = “J * - Je _ (24o)(0.575) _ “Gosioes = 2.897 X10 pe so 2.897 ksi
oe = Me _ (ua \o.378) _ 2.47 * oe, = 22
Bending € Tt > poet AI)» 10" ps BAT7 ks:
Transverse Shear: At pomt H_ stress dve fo tuansverse sheav is zero
Resudtant stresses: 6 = 3.477 kei, 6) = O , Dy = 2297 ksi
Trang 3
PROBLEM 7.42 7.49 Solve Prob 7.27, using Mohr’s circle
9.27 For the state of plane stress shown, determine the largest value of a, for which
stress is equal to or less than 15 ksi
Trang 4*7,50 Solve Prob 7.28, using Mohr’s circle
7.28 For the state of plane stress shown, determine (a) the largest value of y for which the maximum in-plane shearing stress is equal to or less than 12 ksi, (6) the corresponding principal stresses
The ‘stvess pont (6y,- Ty )
die atone the Bine Xi of th
Mohy cinede diagram The extveme points with Re 2k
ave Xy aud Ke
(a) The fangest atbouahte valve
Trang 5
PROBLEM 7.51 7.51 Solve Prob 7.29, using Mohr’s circle
7.29 Determine the range of values of g, for which the maximum in-plane shearing
75 MPa stress is equal to or less than 50 MPa
40 MPa
SOLUTION
For the Mohr's civede , petut
Y Mes at (7S MPa, 40 MPa)
The vad ius of chìa circdes ts R= 5SOMPa bet C, be the Pocation oF the Left most Rimi bing circde and C, be thet
of the night most one
6 CY = 50 MPa
C,Y z $0 MP4
Noting wight twiaugdes
C,DY and C,DY
Likewise, coordinates of point C, ave 1 (0,78 #80) = CO, 105 MPa)
Coordinates of point X, ( 45-30,-40) = (15 MPa, - Yo MPa) Coordinates of point % (105+ 30, - 40} = (13S MPa, - to MPs )
The permt (6, - Ty ) must Bie on the dine XX
Thus ISMPa < 6, € 135 MPa
Trang 67.52 Solve Prob 7.30, using Mohr’s circle
2 MPa 7.30 For the state of plane stress shown, determine (a) the value of ¢, for which the
in-plane shearing stress parallel to the weld is zero, (6) the corresponding principal
so that sỹ z 2 MPa The
coovelinafes oF C cue
Trang 7PROBLEM 7.53
7.53 Solve Prob 7.30, using Mohr’s circle and assuming that the weld forms an angle
of 60° with the horizontal 7.30 For the state of plane stress.shown, determine @) the value of ¢, for which the in-plane shearing stress parallel to the weld is zero, (6) the corresponding principal
Trang 10
7.54 throngh 7.57 Determine the principal planes and the principal stresses for the
PROBLEM 7.56 state of plane stress resulting from the superposition of the two states of stress shown
Trang 127.38 For the state of stress shown, determine the of values of 0 for which the
PROBLEM 7 58 Dormal stress , is equal to or less than 100 MPa i al
8, = fo MPa , G= Oo
Try * ~ GO MPa
Cave * 4(Ge4 Gy) = 4S MPa
Trang 13oe Gy € SO MPa for states of stress
£ Mohr's civele From the civede 4s aye 1s —
Trang 14UAV & Mohv's circte The
ang te @ is cadeu Pat_ct From
Trang 15PROBLEM 7.61 7.641 For the clement shown, determine the range of values of &, for which the
maximum tensile stress is equal to or tess than 60 MPa
Range of Try ~120 MPa € Ty € 120 MPa mm
PROBLEM 7.62 mee rer ke m hung shown, ¢ seen ne m of ales of fy for which the
|#zÌ* ý K* (SY = 7150*- So" = 141.4 MPa
Range of Try - LY MPa € Ty S 1 MPA =
Trang 16
7.63 For the state of stress shown it is known that the normal and shearing stresses are
PROBLEM 7.63 directed as shown and that @,= 14 ksi, ø, = 9 ksi, and đ„„ = 5 ksi Determine (a) the
orientation of the principal planes, () the principal stress 9,,, , (c) the maximum in- plane shearing stress
SOLUTION
là z \M kei, 6= 2 kí, - Sue = 2H VF ILS ksi
Grin = Cave -R R= Gave ~ Sa
Trang 177.64 The Mohr circle shown corresponds to the state of stress given in Fig xxa and b,
7.64 page yyy Noting that o,.= OC + (CX’) cos (24, - 2Ø) and thạt 7,v.= (CX”) sin (24,
~ 2), derive the expressions for o, and 7,,, given in Eqs (7.5) and (7.6), respectively
(Hint: Use sin (A + B) = sin A cos B + cos A sin B and cos (A + B} = cos A cos B + sin A sin B.]
1 OE + €X” ( co 2Ðpces2Ð + sìa 28; sia 4©)
= OC + CX’ cos 2Ð cas2e + CX! sin 29; sìa 2©
= Sat 6Š cà 20 4 Cy sin 20 ~ sin (2Op- 20) = TX’ (sin 20, cos 20 ~ ccs 2Êp sia 4©
sin 20, cos 28 - TX'cos 2Op sin 20
Trang 18
PROBLEM 7.65 7.65 (đ) Prove that the expression Ø đ„ ~ Thy , where o, , 0, , and t,- are
components of stress along the rectangular axes x’ ‘and y’ , is independent of the orientation of these axes Also, show that the given expression represents the square of the tangent drawn from the origin of the coordinates to Mohr’s circle (6) Using the invariance property established in pert 2, express the shearing stress , in terms of ,, , and the principal stresses and on,
to the civede ot KL Twangle OCK
Trang 19Coan = ¥ (One - Gorn) = 100 MPa —_
S& = Bare -f 60 MPa
Trang 21Toman, = (Coan Gan) = tb ksi —
(be) GQ = 14 ker & = 2 ksi Ty > 8 ks #3 0x)
Trang 22¬
PROBLEM 7.69 when (a) g, = 0 and a, = 12 ksi, (6) @, = 21 ksi and g, = 9 ksi (Hint: Consider both 7.69 For the state of plane stress shown, determine the maximum shearing stress
in-plane and out-of-plane shearing stresses.) SOLUTION
Trang 23
PROBLEM 7.70 7.70 and 7.71 For the state of stress shown, determine the maximum shearing stress
when (a) ơ, = 0, (ð) ơ,= +45 MPa, (c) 0, = -45 MPa
Gm LIS MPA | Canin = -25 MPa, Troe * 4 (Cuz - Sax) : 35 MPa =
(6b) 6,2 +45 MPa, 6,2 IWS MPa, 6, = - 25 MPa
Sine? YS MPa, Grin? -25 MPa, T > £ (Bray - Son) = 85 MPa
(c) G6,=-4S MPa, 6, WS MPa, GL= -25 MPa
Omron = YS MPa, Gin = = 4SMPA ae Soni) F
Trang 24
7.70 and 7.71 For the state of stress shown, determine the maximum shearing stress
PROBLEM 7.71 when (a) ø,= 0, (b) 0,= +45 MPa, (c) o,=-45 MPa
ta) 6° oO 2 6.2 19S MPa, OL = Z5 MPa
6G „+ 134$ HỮa , „ve O, - Tran? Ạ,„À-6„) > 97.5 MPa -
Gone? 19S MPa, Gai = 4S MP4, 7x" 1 „-6 )= 39 MP4 z
Gunn? 195 MPA, Cain = ~4SMPQ , Tom? KBoug"See)® 120 MPa =e
Trang 25
2 fast eGe + 6Sbi
Gat Garr Re Il kee ` L_
6> Gx~ Re -2 ksi le 1.9 —l——s.° ——
@ 682 4ksi Sle li ks, Gy -2 kee
Sines? WMS! , Goin? = ksi, Toon ® $ (Grau Sain) = 6S Koi ~
(o) 6 =-dksỉ, Ø.z HH kí, GQe-2ksi
Soo? Wisi, 6xx {#ksi, Toe? EG Game) = 7S kei =
(c) & = 0, Guz Wks, Ge - 2 kee
Sang = Hk, Grin -2 ksi, Troe? % Sram Trin VF GS KSI _
Trang 26
PROBLEM 7.73 7.72 and 7.73 For the state of stress shown, determine the maximum shearing stress
when (a) o,=+4 ksi, (6) 0, = 4 ksi, (c) o, = 0
Girne = Mksi › Guin = ] kst Corse F 4 C6 - ` = 6.5 ks ~
(bY 6,2 -4ksi, a= MY ker, Ge Ike
Sonne = TY KS Gane =~ 4 _ ` _ (œ\ì 6z O, Gur HM kai , 6,7 | ksi
Sra 2 1 Ms, Shin = 0, Conan ® ECCmast Crain) = 7 kes =
Trang 27
Case | Tam = RF ISMPa, v= tf 75*- 4O* = & 63.44 MPa
Qe iU= + 63.494 MPa 6 = ao + 6z “ 56.83 MPa -
Cae = 1(6+6y)* -¬ 6.56 MP2
64 ~ G„+f = 68.44 MPa, GL = we RF = B56 MPa
6 =0 Ginn © C844 MPA, Guin = - BESEMPR #75 MP
(ib) us -63.44 MPa Gy = 2046, = - 196.88 MPa (reject)
Gave = 4(6.+ 5) = = 133.44 MPa Gi = Cant R= -SB.44 MPa
Ge = Gu -R = -208.4¢.MPa, 6.20 , Gum? O
6+ -208.44 MĐA, 2> +ÁG-„- 6a) > 104.22 MPa #75 MPa
Case (2) Assume ve ©2424: 1-6 vì 75 HPA
20 = i Ge St Gey = Cle tise" 7-160 MPa
U-= -3oMPA Gy = 20 +9, 7 +120 MPa _
R= Jur4+ ty = SOMPa
Ci: 6, + 2R = -150 +100 = - SO MPa Ok,
Trang 28
1.15 For the state ofstress shown, determine two values of ø, for which the maximum
PROBLEM 7.75 shearing stress is 7.5 ksi
6, = 10 ksi, Ty 7 kes , 2 1ẨS ksi
let us Sx Oe G7 +6,
(a) Bt +45 ksi Gy? Ro + 6y = 19 ksi ve¡e<Ì
Gn = ‡1(6x+6š }= I46 Mái, 6à* Cant Re 22ksi, Ge Sue ~ R= 7 kev
Sve 22K, Sain O, Tome? ECan Gece) = MH ko Z5 hese
Sue = 6.46, )7 SSK, CaF Gant R= 13k, 6= Gan Re ~ 2 ksi
€xx* 13 ket 5 Cun 7-2 ks: ) Cou? 4 S. %4 À - 7Ẩ5 kes aK,
Case 2 Assume Gu = O Song = ZT mn = 15 ksi = Ge
Se ee +f v*+ Tay"
(6„-Š, -03* + Ure Ty”
(6.-G„)* - 2(-6x)u +ưД + se + Ty”
(6.-Gat= Ty* _ (s-I!9)”- 6Ì 2 Lg aks:
4u 7 6.- Oy is - 10
voto bd ksi G7 20+ Gye 78 ksi =
Sue = £(Gut Sy ) = 8.9 Kear Re fore T= Gl kes
Ga = Gun t+ Ro= IS kee w 6+ Saw - R= 28 ksi
Gime? IS ksi, Gain = O Lg FS ksi
Trang 29
7.76 For the state of stress shown, determine the value of «, for which the maximum
PROBLEM 7.76 shearing stress is 80 MPa
Assume Guta =O Gram = ZT = 160 MPa
R= Gu4- Gi = 160-95 = 6S MPa
Trang 30
PROBLEM 7.77 T17 For the state of: stress shown, determine the value of f,, for which the maximum
shearing stress is (a) 9 ksi, (b) 12 ksi
Center of Mobrs ccvede
Mes at pect Ce Lines
markect (a) show the
Reacts on Tae Limit
Center os Mohr's crete Des at point CQ R= ig ks:
Try = 4fR* -ot = £1.24 ksi _
Trang 31= |2O - (2X8oÌ* - do HA =8
Trang 327.79 For the state of stress shown, determine the range of values of ¢,, for which the
PROBLEM 7.79 maximum shearing stress is equal to or less than 60 MPa
Assume ve 6 = foo MPa
Sa * Oo, = Siren - 12% + CHPa^
=> + 6o* - $o* = +oHPa
~4o MPa € Te < 4o MPa — 320 l—————— [00
Trang 33
*7.80 For the state of stress of Prob 6.66, determine (a) the value of a, for which the
PROBLEM 7.80 maximum shearing stress is as small as possible, (6) the corresponding value of the
Then Ene (inptened is minimum iF yo zo
ốy: G~20 = Oe = HHO MPa, Bae ® Ge- U = HO MPa
R= Ityl = 80 MPa
Gi = Gant R= \W0+8O = 2200 Mf
Guz Gae-R = WWO-80 = 60 MPa
Gime, = 220 MPa , Simin = Ờ, - 7> #(G.~ 6S )= HO HP^
Assumption is in `, Assume GuE 6a = Gae +R = Ốy¿-U +3 0z 22*
Surg % O Toray 2 4 Cray - Gem) * 46
đu! TH ẹ
Optimum vadvye Por ve occurs when TumeCovteot plane) © Coen cineploue)
“ +(6.+ R)=R ov (Sat R o 6,-U 2 2Jo* + 2%
Trang 34
7.81 The state of plane stress shown occurs in a machine component made of.a steel
PROBLEM 7.81 wit a= 45 isi Using the rumination serpy ito determine whether
21 ksi occur, determine the corresponding factor of safety
i GS, + BE" ks Gy = al kes 6,=0
For stresses fy xy- plane Case 7 + Out Sy VF 28.5 ks¿
6xx ¬
AY Ty 4 sĩ Re IEEY Ty = Y(7S) 4 YF 11.715 kai
Gar Git R= 40.215 ksi, Sy = Gaee- R= 16.875 ksi
Vl 65+ 6-66, = 34.977 ksi < 4S kee (Mo yielding )
F.S * gpagp 5 1287 =
(bì Gyr 18 ksi R+ J(Šš5}'4 2` * (Z5Y+t0§SŸ = 14.6 kei
Gar GutR = 4B ksi, 6 Gn - Re ksi
4 6° +6, - 6.6, + 44.193 bei << 4S si (No yieleling )
| (C) By = 20 kes Re f( Meh) tr = 7S) + Go) = 21.36 ksi
B= Sant R= 49.86, Gur Sue - Ro 7.H ksị
Pes 4 6-66, = 46.732 ks > 4S ksi (Yielding occurs )
Trang 35
7.81 The state of plane stress shown occurs in a machine component made of a steel
PROBLEM 7.82 with ø = 45 ksi Using the maximum-distortion-energy criterion, determine whether
yield occurs when (a) ¢, = 9 ksi, (4) ng 18 ksi, (c) „ = 20 ksi If yield does not
{ 21 ksi occur, determine the corresponding factor of safety
—>
7.82 Solve Prob 7.81, using the maximum-shearing-stress criterion
= 6, = 36 ksi GF 2) ks 620
| Fow stresses in Xy- plane G2 = 4 (Ố,ty}= 28.5 ks:
&x -Šy Fo ZS ksi
(Q) Ty = F ksi KzJ/(SSẼ)”+ tự r 1.716 ksi
Git Gan + RF 09,Ä1Eksi, Sy = 64 TT c 16.875 kes!
Gino = 34.977 ksi , Guin = O
A421? Ố»v- San = 4O 21S koi < 4S ksi (Ne yiedeling )
FS tage = 1.114 (b) Tey = l8 ke: + J(SzS5)`+ 2z r 148 kei
Gaz Saet RF 4B ksi , Gur Gae-R = 26
Sime = 42 ksi va * Ó
2-9? „6x * d3 Kes? > 45 ks; CYielzbna vecuvs )
Cì Ty = 20 ksi R= f[(SESY + TZ = 21.4 ksi
6% Gare t R = 49.86 ksi G& = Sue -R= 714 ksi
Sine = 49.86 ksi Cun = O
2124 * Corina ~ Sin = 4986 Ks > 4S lest CYieleing occurs )
Trang 36
7.83 The state of plane stress shown occurs in a machine component made of a steel
PROBLEM 7.83 with ¢,=325 MPa Using the maximum-shearing-stress criterion, determine whether
yield occurs when (a) % = 200 MPa, (6) % = 240 MPa, (c) a = 280 MPa If yield I" does not occur, determine the corresponding factor of safety
—— e100 MPa SOLUTION
Gave = - Oe Re (Sz & Jr + Tyt = 100 MPa
(ay G2 200 MPa, Caz = - 200 MPa
6 = Sue tR = -100 MPa 6,7 Gue- R* - 300MPa
Grmug = O Guin 2 - 300 MPa
xe = Sonn Gain = ZOOMPa = 325 MPa (No yiedehing )
(b) Qr 240 MPa ) Gas = - 240 MPa
62° Ga t R= - 140 MPa ,
G = O 3 Guin = - 340 MPa
RC ow * Coan ~ Sain = 340 MPa > BAS MPa (vielliaa aecovs
Gu: Gin -R = -340 MPa
©) 6 = 280 MPa, G„ = -28o MPa
Gat Gaet Rt -180MPa , Gy > Sae - R= - 380 MPa
Sine = OC, Gunn = - 38O MPa
20 = G.„- Ô~ = 380 MPa > B25 MPa = (Yielehing ocews )
Trang 37
7.83 The state of plane stress shown occurs in a machine component made ofa steel
PROBLEM 7.84 with g,=325MPa, Using the maximum-shearing-stress criterion, determine whether
yield occurs when (2) ơ = 200 MPa, (5) a = 240 MPa, (c) 4 =280 MPa If yield does not occur, determine the corresponding factor of safety
7.84 Solve Prob 7.83, using the maximum-distortion-energy criterion
SOLUTION
Gave = - & R= (Sep Se)" 4 Dy" = 100 MPa
(ad 6 = 200 MPa Gan = - 200 MPa
6 = Sue +t Ro -100 MPa , 6, = Gae- Ro 7300 MPa
G` + 6G *°-Gđể 7 264.56 MPa < 325 MPa (No yiedohing )
(b) 6, = 240 MPa Gre = ~24O MPa
Git 6 +R 7-10 MPa , 6, = Gue-R = - 340 MPa
+ 6&* + @`- GỐy => 295.97 MPa < 225 MP (No yielding )
_ 32G
(cÀ 6,7 280 MPa Gave = ~280 MPa
6 = Gan tR = -180 MPa, 6, 2 Gaue — R= - 380 MPa
4 &*+ G(*°- 6A6, r 3244.21 MP4 > 325 MP2 Criedding occurs )
Trang 38
6, > + : “ng FRING RIOPA = 211.6 MPa
6 = 0 Cae = 4 (Ge Gy) = AG
Trang 40PROBLEM 7.87 7.87 The 1.5-in-diameter shaft 4B is made of a grade of steel for which the yield
+ strength is Øy = 42 ksi Using the maximum-shearing-stress criterion, detcrmine the
magnitude of the torque T for which yield occurs when P = 60 kips,