1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Applied Strength of Materials Part 1 pdf

20 297 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 435,58 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Solutions Manual to accompany APPLIED STRENGTH OF MATERIALS Fourth Edition Robert L.. Mott Prentice BENT ee Upper Saddle River, New Jersey Columbus, Ohio... All rights reserved

Trang 1

Solutions Manual

to accompany

APPLIED STRENGTH OF MATERIALS

Fourth Edition

Robert L Mott

Prentice

BENT

ee

Upper Saddle River, New Jersey

Columbus, Ohio

Trang 2

Copyright © 2002 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458 All rights

reserved Printed in the United States of America This publication is protected by Copyright and

permission should be obtained from the publisher prior to any prohibited reproduction, storage in a

retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise For information regarding permission(s), write to: Rights and Permissions

Department

Instructors of classes using Mott, Strength of Materials, Fourth Edition, may reproduce material from

the solutions manual for classroom use -

10987654321 Prentice

Hah

————

ISBN 0-13-088579-7

Trang 3

CHAPTER B1 Basic Concepts in Strength of Materials

fol ro l-/S ANSWERS IN TEAT,

_——=— —

/-%

` a `

/-18

R ~ `Š

—` £ lad IN

ð us

4 ~ `

hi

Weems = /Booky 9.81 m/s? = l2 ÁSB Agem/S*2/22744`A/

We 127 4b

TOTAL Wh tangs on Ê2-9812%/6 >«2929Á2I

EA Front wieer: Fp *(‡)(a.V)(39,awl)= 2605 Á

EACH Rete wuert f2 =(‡)(0.40)( 2¢.2thw) = 4-774d)

(0Aø/aa > TOTAL FRCE/ARA ;

ToTAL FoRce= 6200ky-9.8/ a5? =66.7.4N

A#eA ~ (Z0) (3,6⁄2:) = /2-5⁄m ”

LoAoine = €Ẽ 24/72 „+ = 391 hilar? ZAb a Fo@(E = MT = m-4* 25kg -# on» 29322

Ke §P&IAlá SEALG = W700///me “BÉ

AL» Fo 295N

K %500A//2

W 2/77 Al = 19200 d/% 02208 LE/N © 298048

8 O0bSYS n= SISK = SYeTan0m

Fe = 78S 40° 7850N« 0.2298L0/w */765 48

Fp *MeIIAN® H7ION 4b, 32VAL8/ = 26Y6LE

Lodous = 38kf = 3.8/x10 HN, Ý_ 0.22,

F = 295+ 0.2298 8/4 = §5./ £8

es ca

ÁL ¬®— 8 a

Trang 4

/-2€ mn oe cay 85:4 LES, Ø9 Su £

—D

/~2 “~m v.Ắ aa jane? F178 LBS '= B98 Sues “st

J-3o & 2/6oo @diké.f†S.k/6/Hi © 19,000 Ata Ht Mle

/-3/ %%= /Voao /0vá44090s Ml, f Ph? Ib, S00 ble +96 Sha

Su® Pb000gei x 6.895 bho/ Au = FLY 000K = SEV M Loe

=

[320 m= 1950 Rev Rev , ZI RAC, foun = rh Zee = 783 Rao/s oA

/33 A=/ữ./22*x Bevan)” = 909? anan®

L:3¢ W=0.0пuy 2%SW2ax//M "2,03 nản (3Š ỐC ÔA/neoAl4: /8/2AxX2SVx2s/205= 952 gam

/V+ 2% 2mm Jin = = 305m

A#EA = (29,0) °= 320/4}

Area = (IS9 mưa)" = 224/052 nạn 2

VYotume =V © AREA 4HGlGHtT

VE 32/⁄u†y /21 = 2888 //°

VF0.S#“rÌ`a¿ (0FT£2/2€ 73

V = (209x/0man ) 4 30S anim = u32 XA 2n"

¥™ (0.95 Im¥ * 0.308 © 6.6432 s 432v 12y8 1-360 28 ATO? Wlasisw)'/¥= 0.2000m* Ni 2

Ax 0200 w* (26m) a 24mm

i322 o- f> Lay TOUR = Lids © OTM gr 1007 Mle

138 one we 20K W ,

hs

Z-£- 6 teas = SB eet

/-3

TC + va = 250 pol

Trang 5

J=J Lono ovSHe.r®W=xnd=/B†0Aly-9/8/2/6*= /0as0/

Laty =o= Ñfa£A')(&om=) =Cy220=^) Ee

Cy = 45/2 V —4+—=Ƒ ề

ep,

Tula Li, WEN = 1B Le —|z_«o

Wim)

3 /¬ =P 70242:6_ _ ‘

/-# 3 o= =f 2956 = 0 (6/2

;-#/ cz Shy = ook = SY.7 le

T lŠ yr sig = 100ky 481m /s* -.2Â 4, Ate

Aby= AB Ain 38° - scr

đây = 4ó caa 4S9 fk

ổc„= BC ainss*

BCy = a

ZF, 20 = AB, ~ BC

Aaa= 6c 2S = /28 8C Arn 3S”

O= (1928 BC) Ceaas* + BC Coa SS*-~HA24N

A,2Aw= Bc[//20*-0,Š7] = 4993 be

&c = ⁄224//11v4 23,6340

A6=z /22 ác = 33.7%Ân

ø Rap A8: đ=-AÊ 32.26xn 3V -

nhờn on Ge BIH e111 Ml 3

Sregss w Pid Bar đặc = BS « 236240 “A 7 Comm) ¥ 2120 95,2 she

3

Sreess is Rov B02 Op y+ BP = thee (31.1 lao

Trang 6

“~t ('“#20/207 ym hm = (0.0/00 f2)(2.42)(3ose) *

£= 23¿0cC//

A= WUbam) /f = Zof mam ©

=» £- 2Ÿ697

(7 Ty muat “-20//2-,

/~#2 2=o 2mm) ”= o0 „xa °-

Foe 491 =(/0 -yora)ar =/sodd

“ fs» £50009 lh? tla TEwsin 90M ———————

FoR Be: f= yo-yo =Ắ 204

a yt 2 128/04 TENSION

FOR Cd! Fag « Ibn

% * TH MOAN, 2 122 Whe TEMS IOV

—— Akets: A-03 A* tF(Ae)/V* V92"

C-0 5 Á° 0/617" 200mm

POR AG: Fag ® — 265 -22.32 +495 2-/52hd

Ong © =——=

FoR BOt Fy © -9,65 -/2.32 = ~2/.92 MN

đạ, =.Eác „ ^2//424/03/

= BSI Moa, Conte

a Waa £ =Ÿ1⁄7/2Áv C01

FoRco: %;=-9,6 7Â

= Feo „ 9.67 VŨ

wh A* riko)" = 0.999 ye® (them Pree ~Aen A42)

Fok OL: Zặc= = -2200 có

D799 mee

FoR RB: Figs 2500 +2 (8.000 Cea 30) =/6 35048

đa, = -FAÊ Km =ðo H1! SẼ Ố reAs/ov

= 3/29 F3/ T#1/0v

Trang 7

/-Z2Ð0 — £ he 20.2 28001 YS) ~ fy, C32)

đập = ¥200 Le

G7,» £222 #200 eG _— cổ z32 (

ÉP A Baten 223 pul_ Tenshi

8O2/0.SkN

10.Sk0 “

Joint A

0 AD fin 30" = 62s Á

< Ao = A.ShW 260

A Ab AG = Ao Ces 202909 hy * be

S2sks

T 2

—_ ,, 2 4%" 2% ° 4.49 x42) =223//2 ?: ñ 2X = lợi On ENE

BO: Go= L052 19, Bool Bane LIS Mit, TENSION

40,۩bt A =(30)*-(20oy = Soomm*

Fo Fis * 18S LON a2), 1the Co/6/64/

Trang 8

1-52 Ấ/!„ =o* Êo0u()+-/26oo(/v) ¬£v (8)

Rp = /0000 Le

Zp =0 ® [2000 (6) +600002)-8,08) Raw 800016

ae ,

AB = R, Joe BOC/o.2 = /000L8 Come,

ÁP* AB œ«eo* /0000(0-6)= 6060L6 Ems

gordo

c6 BE Arn £6000 ~AG OHO =O

6 6c Be = Abang ~Go0o , 10000(0.8) “CC - 260018 Teus, ane oF

se P\Xe BCE AC 42 O + BE cose = 10000606) + 2500.0 =

Be BC> 780046 Come

!2p0o Lổ 8£* C£ Cone

Cr ® b¢/cosa ™ 2500 /o.6* /2500L6 Come

¿ tô CE 2 /ÈO0b = CE đến ® = /20t0=/2StO0(0£)#2000LÊ C

Le

ow EF ‘ STResses:

£ Oo = Wu = 6000/4, 9e4 = S/F fat

|&# ®/0000tó Ser = 7500/0968 ©] )¥E pd

[jo =0

AREAS OF Mensees ? ÍÍtPP, 47, A6) Ten * 2500/o,yey 25765 pus

AD, 0, £r— 200Y8)* 0.968 Cee 200 /o.yay 5/92 pl

BO, be Ce OY đạo = ~200/% và 2= (132/222

AG, BC, CF — 2Ch2/)2 24 w? | og © -750/2.v2= ~3099 pul

Mere? ComPhe sso MEMCERS MULT BE | Cte = ~RSWY/ 2.92 =~ Fes ped

CHE txto Fok Column Buckt Ina

Trang 9

FA, 202 (ZEN 40) ABLES) Sz Ln

Ab= Zohn

Z= 201V = 0/0

Ø) nen

/a2.XÀM

_!-5f 4+ n(0so5)/V=o.200w*

= Lyn (260018 /y,209 py» 63 O00 ps

- SẼ 4= 2.6540) + 2LbvoVosyct)] = #41 2?

on ime (S2o00 16/y gp iy?) @M 79/ pros

LSS Ae (8040) ~ (60S) FT 40)' Y= 3557 men

đ«= ĐA SFO S2 mau >= 180 Mla

1-57) «= DIRECT SHEAR - SINGLE SHEAR

——— ————————————r=rsene

As= C#C20Y AY) man” 11 xman

7e FAs * BS OW) 3 nan = 146M,

Fz SS

/-§8 ẤF,*o* rz(//5)¬f,(253 * ¥ +

Fpx /2?A/

Á¿> L0, «3.01 2maY :0o tới

Te Ftp LY granan>? 2501 ban PIN Am Siete

SHEAR ' c|ẾT, Pbed Peae -¥6t F223695 N

Ase 2urlayr] = 757 mm™ Dovbre SHEAR

Trang 10

c(cép —- 4:=(.oX3.3)*/0.f/,Y

y* F/As* Ê0eo Lê Jos ww SI CS, LBL Ás= (2/37) +r(ø) ÏỚ.g) = ¥95.9 am?

PR Ƒˆ/He£ äP6xð”A 1S VIE? mm >* Off he

{6 Le Vig? t67 = 0.72) m —-

As* (2060) + rode +20 nose UN 6

T ® Flas? YS000c8/ yyy = 39327 0 —ả L—

£82 7

“su 7⁄4" 354m 20224 s Sea esta PP %

As = b:t.2 G0)(22)% 226 An Y

LEE Aix The s0mrem/y , = dooce

As beh 08022598 fl25n*

»z fy, = G00 Ey a sy s We ph

aE Le beveee swetes Ae» AMOS) = 0.393 we

Te ye 20000 L4/ 4,393 yt 2 50 O80¢%/

COLLAR SiENR COLLAR Áo“ Conwecron body

Ag = Wt t= los lost?) * asis4ia~

?= “4, = 2baao +4/2,%⁄„v` “46 700 FS)

Ây= 8doe

&~ Bykaw 2093 le by

Ase2 lates) py) =Q,2%

7⁄2 82, * Ê6/3(8/2,2/;ux “394% £/

v6 Az* (/0)//2) 80mm”

TP" Plage 8Ø8X40°Al nxue> “(83 M4,

£268 A4i= (2/20) * 2i0 mm”

Te Flags BB2KON/ yg gusgt * LEY Mob,

Trang 11

„692 /:e mrot=rr(02)(8)220/,6xaa^—”

T= Ply = 22.3409 /3u,,6 mm * 23-9 Abbe

£222, 4»„* 2LT(/21V] =3%26.2A22⁄/H” Tựo KifFTi=5/lláce S/ehe

7= #/u = Bd xo W/azeranm™ ® $5/ba

T= Flag = 10.200'W/ysr,4 atm® © 22ST Mbt

BEARING STRESS

L292 ay Wests - on sran nares hy 4430" (Ath A-7)

* Đy,>26200/6Á43,v> 6969 /5/

As Svea piare ow Cowcrere: A,@l2)e WY m™

= Fig,= 26000 ley 4 * 181 Psi

€) conceere Ø0 ow CouceeTe Foorzet Ág*(Rt)°e$#2f/w>

CBF 22» « 26000 L8 1> * 80.2 f3 DP) Concears Foonne on Sot: Ay=Gb)” = 1296 w™

2: * Pip, > U4 00> LYjzag yy 920.1 ps}

£273, 0) pire ow Fiooe+ A,=Ÿ(2.31€”~2.062)* (61524

đ * Đ, 523509 03g jy ® sunt

at A) Boer HeAv OW WASHERS AS* Ayge “Azo (See att ot)

As * 0:26610,25)*= 7(2.sev)/V = 0.88 9

+ F/¿,« 2(€LÊ/2,230/2-® /Á/0 0$/

b) wasnet ov wooo: lụa {(430€°-6.463°) 823022

đ:* Fly - 38:0, 282/v+ + 3/2

Trang 12

zE=É 2/474 “đu fan /-65! f= 2000048, Fie 1-28

đc « ZY, 20 000 th /8026yy* * /ÓÁ 200 Ø5/ (veer #164)

8) CoLtAR/yyzet Age Fl 0*-d Se Fln2s* 0.928) 90626 07

LB, Flom FG 1-94

OB) ON Monee PART? Aye’ 2 dt, *2M12)U15)* 360 anan*

Qe %, 2 M2 xo, ko xạ" ° 28.3 ///4,

4) ow ovrer /mers: A,^ #d6, *(V(/2X/0)* 862w ®

E1 re./-f7t 4,2 0oXo+£(ÊWÀ)* %3 2s ^

OS" a= SEM Ng xu "612/40

10

Trang 13

CHAPTER 2 Design Properties of Materials

OMLY THOSE FRIBLEMS REQUIRING UMIEKICAL DATA ALE Shows

ZN Su* FoAsi (OU mea) 5 Sy* Cdat (HY at), 25K Bowe,

bettuse % evonsarton 75%, (7 15 overne (APA w-13)

2/5 10% HE: 36% erownatiw -GeEATe Dvenuiry

/oWo HRt 25% srowsnrionw (ee AAD

2716 Als! WW OOF 700% Hit Suc rue ALLey STEEL WITH Oy,

CAk6on), Quewchen Wi On , TEAR Ar joe, (rr A-13) YES, Sy = /72, Al @ 207100 , Sy" 1294 @ OOF 909

BY wreatotATiod Sy x/sool @ Ooraco (App A-13)

w 4 813) 6

7% DEMSTY = WeLuzs6 * (2,263 04/1 Ì(5o)(6)(2yg)Ÿ^ 503/90)/⁄y ⁄

(ÐF2A-8) U4Lug oF LoL" VALVE ol op este hry

“-⁄

.&cÑ E= 30x 5/61 (2096/w) Foe AL Chbau Aw Mery srees

27,

£20, VoLU2E2AeeAx(gex¿7z= FO) “« 22 © 4909510 Sean?

| (APeA-R)~ ng WS Sy ae ea? ISS 2680 RF 4.969 eit Anan 7 ' m3 =3.?? 4>

i WE Any = 2T1ky, Ul an] 26 98 hig /g? « 56,98 A/

đụ: 2S ¡6n = U40 Tỉ 6 snrfee, (42A-/)

ALLOY oF C01041 WITH Sitilad Ano MANES IVA Hear TReateo To TẾ remPER

Sa sy £ DEMS ITY en 427?

boi-o JBkKÍ 8&k£(- (0xe f7 0.40 48/103

Sh Sue YOks/ 3 Sue 140 ksi lara A-te)

iN ,

231 Bewome O%* Hfso/; T€uteu 03* ÐZQVÝ ; Cha, /Dob tsi CARLA

7o 644w, 365 fšì few€ruPituLĐE To đi; đe 13 © 46/S/

(App, A-18)

Trang 14

2-44 Graphite fibers

2-45 S-glass, quartz fibers, tungsten fibers coated with silicon carbide

2-51 Material

Graphite/Epoxy (High Strength) Aramid/Epoxy Composite Boron/Epoxy Composite Graphite/Epoxy (Ultra-hi mod) Glass/Epoxy Composite

Titanium Ti-6AI-4V

AISI 5160 OQT 700 Steel

Aluminum 7075-T6

Aluminum 6061-T6 AIS! 1020 HR Steel 2-52 Material

Graphite/Epoxy (Ultra-hi mod) Boron/Epoxy Composite

Graphite/Epoxy (High Strength)

Aramid/Epoxy Composite AISI 1020 HR Steel AISI 5160 OQT 700 Steel Titanium Ti-6AI-4V

Aluminum 6061-T6 Aluminum 7075-T6 Glass/Epoxy Composite

2-60 Vm = 1 - Vf = 1.0 - 0.60 = 0.40

2-61 See Equation (2-5)

Specific strength

(in)

4.86x106

4.00x106

3.60x106

2.76x106 1.87x106 1.00x108 0.929x108 0.822x108 0.459x 106 0.194x106

Specific modulus

(in)

8.28x108 4.00x 108 3.45x108 2.20x108 1.06x108 1.06x108 1.03x 108 1.02x108 0.99x108 0.66x108

2-62 See Equations (2-6), (2-7), (2-8), (2-9)

12

Ratio Als!

25.0 20.6 18.5 14.2 9.63 5.18 4.78 4.23 2.36 1.00

Ratio Als!

7.81 3.77 3.25 2.07 1.00 1.00 0.97 0.36 0.93 0.62

to

1020

to

1020

Trang 15

2-63

2-64

2-65

Given: Vs = 0.50; Fibers are high strength carbon-PAN; Matix is Epoxy See Table 2-Ffor data Vm = 1- V/ = 1 0 - 0.50 = 0.50

Use Equation (2-5): sục = Su V + om' Vm Strain at which fibers would fail: ct = suf /Ef = (820x 103 psi)/(40x106 psi)

ef = 0.0205

Stress in matrix at this strain: om' = Em € = (0.56x106 psi)(0.0205) = 11 480 psi

Then: suc = (820x 103 psi)(0.50) + (11 480 psi)(0.50) = 415x103 psi

Modulus of elasticity: Ec = Ef Vf + Em vm = (40x106)(0.5) + (0.56x106)(0.50)

Ec = 20.3x106 psi

Specific weight: yc = yf Vf + ym Vm = (0.065)(0.50) + (0.047)(0.50)

Ye = 0.056 lb/in3

Given: V¢ = 0.50; Fibers are high modulus carbon; Matrix is Epoxy

See Table 2-9 for data Vm = 1- Vị = 1:0 - 0.50 = 0.50

Use Equation (2-5): suc = Suf Vf + am' Vm

Strain at which fibers would fail: ef = suf /Ef = (325x 103 psi)/(100x106 psi)

ef = 0.00325

Stress in matrix at this strain: om! = Em & = (0.56x106 psi)(0.00325) = 1820 psi

Then: Suc = (325x 103 psi)(0.50) + (1820 psi)(0.50) = 163x103 psi

Modulus of elasticity: Ec = Ef Vf + Em vm = (100x106)(0.5) + (0.56x106)(0.50)

Eg = 50.3x106 psi

Specific weight: yo = yf Vf + ym vm = (0.078)(0.50) + (0.047)(0.50)

Yo = 0.0625 Ib/in3

Given: V¢ = 0.50; Fibers are aramid; Matrix is Epoxy

See Table 2-4for data Vm = 1- Vf = 10 - 0.50 = 0.50 Use Equation (2-5): Suc = Suf Vf + om' Vm

Strain at which fibers would fail: ef = Sut /Ef = (500x 103 psi)/(19x106 psi)

ef = 0.0263 Stress in matrix at this strain: om' = Em € = (0.56x106 psi)(0.0263) = 14 740 psi Then: suc = (500x 103 psi)(0.50) + (14 740 psi)(0.50) = 257x103 psi

Modulus of elasticity: Eo = Ef Vf + Em vm = (19x106)(0.5) + (0.56x106)(0.50)

Ec = 9.78x106 psi

Specific weight: yc = yf Vf + ym Vm = (0.052)(0.50) + (0.047)(0.50)

Ye = 0.0495 Ib/in3

13

Trang 16

Sofutions to Problems 2-66 to 2-67: Some data approximated from Figure P2-66

Most accurate vaiues are for Ultimate strength (b.)and % elongation (f)

Elastic limit (d.) estimated between proportional limit (c.) and yield strength (a.)

Modulus of elasticity (e.) computed from (A stress / A strain) Data are approximated

Materials found from Appendixes A-13 through A-17 matching s,, s,, % Elongation, and E

2-66 a S,= 73 ksi -~ Offset

b s, = 83 ksi

Sp = 60 ksi Se) = 67 ksi

E = 10.0x10° psi

11% Elongation Ductile

Aluminum 7075-T6

Sy = 75 ksi

Sp = 50 ksi

Sei = 56 ksi

E = 16.7x10° psi

15% Elongation

Ductile

Copper Alloy C54400 Bronze-hard

S, = 55 ksi

Sp = 50 ksi

Se = 53 ksi

E = 20.0x10° psi

0.5% Elongation

Brittle

Cast fron

ASTM A48 Grade 60

Sy = 57 ksi

Sp = 30 ksi Set = 27 ksi

E = 26x10° psi

21% Elongation Ductile

Structural Steel

ASTM A36

-penpag

2-69

2-71

2-73

14

2-67 a sy = 173 ksi Yield point

Sp = 162 ksi

Sq = 188 ksi

E = 29.0x10° psi

15% Elongation

Ductile Steel AiSi 4140 OQT 900

%= 49 ki - Yield point

Sy = 65 ksi

Sp = 46 ksi

Sa = 48 ksi

E = 26.5x10° psi

36% Elongation Ductile

Steel AlSI 1020 GD

%y= 53 ksi - Offset

Sy = 59 ksi

Sp = 31 ksi

Se = 42 ksi

E = 12.0x10° psi

5.0% Elongation Borderline Brittle/Ductile Zinc

Cast ZA-12

%= 19 ksi - Offset

$y = 40 ksi

Sp 14 ksi

Se = 17 ksi

E=6x10” psi

5% Elongation Bordertine Brittle/Ductile Magnesium

ASTM AZ 63A-T6

Ngày đăng: 10/08/2014, 11:21

TỪ KHÓA LIÊN QUAN