1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

A Principles of Hyperplasticity part 15 docx

12 288 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 558,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2003b Continuous hyperplastic models for overconsoli-dated clays, Mathematical and Computer Modelling, special issue on Mathematical Models in Geomechanics, Proc.. 2000 Critical state

Trang 1

References

Atkinson, J.H., Richardson, D and Stallebrass, S.E (1990) Effect of recent stress history on the

stiffness of overconsolidated soil, Géotechnique, Vol 40, No 4, 531540

Bazant, Z.P (1978) Endochronic inelasticity and incremental plasticity, Int J Solids Struct., Vol 14,

691714

Berryman, J.G (1980) Confirmation of Biot’s Theory, Applied Physics Letters, Vol 37, 382384 Borja, R.I., Tamagnini, C and Amorosi, A (1997) Coupling plasticity and energy-conserving

elastic-ity models for clays, Proc ASCE, J Geotechnical Eng., Vol 123, No 10, 948956

Butterfield, R (1979) A natural compression law for soils (an advance on e-log p'), Géotechnique,

Vol 29, No 4, 469480

Callen, H.B (1960) Thermodynamics, Wiley, New York

Collins, I.F (2002) Associated and non-associated aspects of the constitutive laws for coupled

elas-tic/plastic materials, Int J Geomechanics, Vol 2, No 2, 259267

Collins, I.F (2003) A systematic procedure for constructing critical state models in three dimensions,

Int J Solids Struct., Vol 40, No 17, 43794397

Collins, I.F and Hilder, T (2002) A theoretical framework for constructing elastic/plastic constitu-tive models of triaxial tests, Int J Numer Anal Methods Geomech., Vol 26, 13131347 Collins, I.F and Houlsby, G.T (1997) Application of thermomechanical principles to the modelling

of geotechnical materials, Proc R Soc London, Series A, Vol 453, 19752001

Collins, I.F and Kelly, P A. (2002) A thermomechanical analysis of a family of soil models, Géotech-nique, Vol 52, No 7, 507518

Collins, I.F and Muhunthan, B (2003) On the relationship between stress-dilatancy, anisotropy, and

plastic dissipation for granular materials, Géotechnique, Vol 53, No 7, 611618

Coussy, O (1995) Mechanics of porous continua, Wiley, New York

Dafalias, Y.F and Herrmann, L.R., (1982) Bounding surface formulation of soil plasticity, in G.N

Pande and O.C Zienkiewicz (eds.), Soil mechanics: Transient and cyclic loads, Wiley, New

York, 253282

de Borst, R (1986) Non-linear Analysis of Frictional Materials, Doctoral thesis, Delft University of Technology

Drucker, D.C (1951) A more fundamental approach to plastic stress-strain relations, Proc 1st U.S Nat Congr Appl Mech ASME, June, 487491

Drucker, D.C (1959) A definition of a stable inelastic material, J Appl Mech., Vol 26, 101106

Einav, I (2002) Applications of thermodynamical approaches to mechanics of soils, PhD Thesis, Technion – Israel Institute of Technology, Haifa

Einav, I (2004) Thermomechanical relations between stress-space and strain-space models,

Géotechnique, Vol 54, No 5, 315318

Einav, I (2005) Energy and variational principles for piles in dissipative soil, Géotechnique, Vol 55,

No 7, 515–525

Trang 2

340 References

Einav, I and Puzrin, A.M (2003) Evaluation of continuous hyperplastic critical state (CHCS) model,

Géotechnique, Vol 53, No 10, 901913

Einav, I and Puzrin, A.M (2004a) Pressure-dependent elasticity and energy conservation in

elasto-plastic models for soils, J Geotechnical Geoenvironmental Eng., Vol 130, No 1, 8192

Einav, I and Puzrin, A.M (2004b), Continuous hyperplastic critical state (CHCS) model: derivation,

Int J Solids Struct., Vol 41, No 1, 199226

Einav, I., Puzrin, A.M., and Houlsby, G.T (2003a) Numerical studies of hyperplasticity with single,

multiple and a continuous field of yield surfaces, Int J Numer Anal Methods Geomechanics,

Vol 27, No 10, 837858

Einav, I., Puzrin, A.M., and Houlsby, G.T (2003b) Continuous hyperplastic models for

overconsoli-dated clays, Mathematical and Computer Modelling, special issue on Mathematical Models in

Geomechanics, Proc Symp at Scilla di Reggio Calabria, Sept 19–22, 2000, Vol 37, Nos 5/6, 515523

Eringen, A.C (1962) Nonlinear theory of continuous media, McGraw-Hill, New York

Fleming, W.G.K., Weltman, A.J., Randolph, M.F and Elson, W.K (1985) Piling engineering, Surrey

University Press

Fung, Y.C (1965) Foundations of solid mechanics, Prentice-Hall, New Jersey

Gajo, A and Muir Wood, D (1999) A kinematic hardening constitutive model for sands: The

multi-axial formulation, Int J Numer Anal Methods Geomechanics, Vol 23, No 9, 925965 Graham, J and Houlsby, G.T (1983) Elastic anisotropy of a natural clay, Géotechnique, Vol 33, No

2, June, 165180; corrigendum: Géotechnique, 33(3), Sept 1983, 354

Han, W and Reddy, B.D (1999) Plasticity: Mathematical theory and numerical analysis, Springer,

New York

Hill, R (1959) Some basic principles in the mechanics of solids without a natural time, J Mech Phys Solids, Vol 7, 209225

Hill, R (1978) Aspects of invariance in solid mechanics, Adv Appl Mech., Vol 18, 3963

Hill, R (1981) Invariance relations in thermoelasticity with generalised variables, Math Proc Cam-bridge Philos Soc., Vol 90, 373384

Hill, R (1987) Constitutive dual potentials in classical plasticity, J Mech Phys Solids, Vol 35, 2333 Holzapfel, G.A (2000) Nonlinear solid mechanics, Wiley, Chichester

Houlsby, G.T (1979) The work input to a granular material, Géotechnique, Vol 29, No 3, 354358

Houlsby, G.T (1981) A study of plasticity theories and their applicability to soils, PhD Thesis, Uni-versity of Cambridge

Houlsby, G.T (1982) A derivation of the small-strain incremental theory of plasticity from

ther-momechanics, Proc Int Union Theor Appl Mech (IUTAM) Conf Deformation and Flow of Granular Materials, Delft, Holland, August 28-30, 109118

Houlsby, G.T (1985) The use of a variable shear modulus in elastic-plastic models for clays, Comput Geotechnics, Vol 1, 313

Houlsby, G.T (1986) A general failure criterion for frictional and cohesive materials, Soils Found.,

Vol 26, No 2, 97101

Houlsby, G.T (1992) Interpretation of dilation as a kinematic constraint, Proc Workshop on Modern Approaches to Plasticity, Horton, Greece, June 1216, 1938

Houlsby, G.T (1996) Derivation of incremental stress-strain response for plasticity models based on

thermodynamic functions, Proc Int Union Theor Appl Mech (IUTAM) Symp Mech Granu-lar Porous Mater., Cambridge, July 1517, Kluwer, 161172

Houlsby, G.T (1997) The work input to an unsaturated granular material, Géotechnique, Vol 47, No

1, 193196

Houlsby, G.T (1999) A model for the variable stiffness of undrained clay, Proc Int Symp Pre-Failure Deformation Soils, Torino, September 2629, Balkema, Vol 1, 443450

Houlsby, G.T (2000) Critical state models and small-strain stiffness, Developments in Theoretical Geomechanics, Proc Booker Memorial Symp., Sydney, November 1617, Balkema, 295312

Trang 3

References 341

Houlsby, G.T (2002) Some mathematics for the constitutive modelling of soils, Proc Conf Math Methods Geomechanics, Horton, Greece, Advanced Mathematical and Computational

Geome-chanics, ed D Kolymbas, Springer, 3553

Houlsby, G.T Amorosi, A., and Rojas, E (2005) Elastic moduli of soils dependent on pressure:

a hyperelastic formulation, Géotechnique, Vol 55, No 5, June, 383392

Houlsby, G.T and Cassidy, M.J (2002) A plasticity model for the behaviour of footings on sand

under combined loading, Géotechnique, Vol 52, No 2, March, 117129

Houlsby, G.T, Cassidy, M.J., and Einav, I (2005) A generalised Winkler model for the behaviour of

shallow foundations, Géotechnique, Vol 55, No 6, 449460

Houlsby, G.T and Mortara, G (2004) A continuous hyperplasticity model for sands under cyclic

loading, Proc Int Conf Cyclic Behav Soils Liquefaction Phenomena, Bochum, Germany,

March 31April 2, 2126

Houlsby, G.T and Puzrin, A.M (1999) An approach to plasticity based on generalised

thermody-namics, Proc Int Symp Hypoplasticity, Horton, Greece, 233245

Houlsby, G.T and Puzrin, A.M (2000) A thermomechanical framework for constitutive models for

rate-independent dissipative materials, Int J Plasticity, Vol 16, No 9, 10171047

Houlsby, G.T and Puzrin, A.M (2002) Rate-dependent plasticity models derived from potential

functions, J Rheol., Vol 46, No 1, Jan./Feb., 113126

Houlsby, G.T and Wroth, C.P (1991) The variation of the shear modulus of a clay with pressure and

overconsolidation ratio, Soils Found., Vol 31, No 3, Sept., 138143

Hueckel, T (1977) The flow law of the granular solids with variable unloading rule, Problemes de la Rheologie et de Mecanique des Sols, ed W K Nowacki, PWN Warsaw, 203217

Il’iushin, A.A (1961) On the postulate of plasticity, J Appl Math Mech., Vol 25, No 3, 746752

Iwan, W.D (1967) On a class of models for the yielding behaviour of continuous and composite

systems, J Appl Mech., Vol 34, 612617

Kavvadas, M.J and Amorosi, A (1998) A plasticity approach for the mechanical behaviour of

struc-tured soils, The geotechnics of hard soils – soft rocks, ed Evangelista and Picarelly, Balkema,

Rotterdam, 603612

Kolymbas, D (1977) A rate-dependent constitutive equation for soils, Mech Res Commun., Vol 4,

367372

Lam, N.-S and Houlsby, G.T (2005) The theoretical modelling of a suction caisson foundation using

hyperplasticity theory, Proc Int Symp Frontiers Offshore Geotechnics, Perth, Australia, Sept Lemaitre, J and Chaboche, J.-L (1990) Mechanics of solid materials, Cambridge University Press

Likitlersuang, S (2003) A hyperplasticity model for clay behaviour: An application to Bangkok clay, DPhil Thesis, Oxford University

Likitlersuang, S and Houlsby, G.T (2006) Development of hyperplasticity models for soil mechan-ics, Int J Num and Anal Meht in Geomechanmechan-ics, Vol 30, No 3, 229254

Martin, C.M and Houlsby, G.T (2001) Combined loading of spudcan foundations on clay:

Numeri-cal modelling, Géotechnique, Vol 51, No 8, Oct., 687700

Martin, J.B and Nappi, A (1990) An internal variable formulation for perfectly plastic and linear

hardening relations in plasticity, Eur J Mech., A/Solids, Vol 9, No 2, 107131

Matsuoka, H and Nakai, T (1974) Stress-deformation and strength characteristics of soil under

three different principal stresses, Proc JSCE, Vol 232, 5970

Maugin, G.A (1992) The thermomechanics of plasticity and fracture, Cambridge University Press Maugin, G.A (1999) The thermodynamics of nonlinear irreversible processes, World Scientific,

Sin-gapore

Mitchell, J.K (1976) Fundamentals of soil behaviour, Wiley, New York

Mróz, Z (1967) On the description of anisotropic work hardening, J Mech Phys Solids, Vol 15,

163175

Mróz, Z., Norris, V.A., and Zienkiewicz, O.C (1979) Application of an anisotropic hardening model

in the analysis of elasto-plastic deformation of soil, Géotechnique, Vol 29, No 1, 134

Trang 4

342 References

Mróz, Z and Norris, V.A (1982) Elastoplastic and viscoplastic constitutive models for soils with

application to cyclic loading, Soil mechanics – transient and cyclic loads, ed G.N Pande and

O.C Zienkiewicz, Wiley, 173218

Owen, D.R.J and Hinton, E (1980) Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea

Palmer, A.C (1966) A limit theorem for materials with non-associated flow laws, J Mécanique, Vol

5, No 2, 217222

Pappin, J.W and Brown S.F (1980) Resilient stress-strain behaviour of a crushed rock, Int Symp Soils under Cyclic Transient Loading, Swansea, 169177

Prager, W (1949) Recent developments in the mathematical theory of plasticity, J Appl Phys., Vol

20, 235241

Prevost, J.H (1978) Plasticity Theory for Soil Stress-Strain Behaviour, Proc.ASCE, J Eng Mech Div, Vol 104, No EM5, 11771197

Puzrin, A.M and Burland J.B (1996) A logarithmic stress-strain function for rocks and soils,

Géotechnique, Vol 46, No 1, 157164

Puzrin, A.M and Burland J.B (1998) Non-linear model of small-strain behaviour of soils,

Géotech-nique, Vol 48, No 2, 217233

Puzrin, A.M and Burland, J.B (2000) Kinematic hardening plasticity formulation of small strain

behaviour of soils, Int J Numer Anal Methods Geomechanics, Vol 24, No 9, 753781 Puzrin, A.M and Houlsby, G.T (2001a) On the non-intersection dilemma, Géotechnique, Vol 51,

No 4, 369372

Puzrin, A.M and Houlsby, G.T (2001b) Fundamentals of kinematic hardening hyperplasticity, Int J Solids Struct., Vol 38, No 21, May, 37713794

Puzrin, A.M and Houlsby, G.T (2001c) A thermomechanical framework for rate-independent

dissipative materials with internal functions, Int J Plasticity, Vol 17, 11471165

Puzrin, A.M and Houlsby, G.T (2003) Rate dependent hyperplasticity with internal functions, Proc ASCE, J Eng Mech Div., Vol 129, No 3, March, 252263

Puzrin, A.M., Houlsby, G.T., and Burland, J.B (2001) Thermomechanical formulation of a small

strain model for overconsolidated clays, Proc R Soc London, Series A, Vol 457, No 2006,

Feb., 425440

Puzrin, A.M and Kirshenboim, E (1999) Evaluation of a small strain model for overconsolidated

clays, Proc Conf Pre-failure Deformation Characteristics Geomaterials, Torino, Vol 1,

Balkema, Rotterdam, 483490

Rampello, S., Viggiani, G.M.B., and Amorosi, A (1997) Small-strain stiffness of reconstituted clay

compressed along constant triaxial stress ratio paths, Géotechnique, Vol 47, No 3, 475489

Reddy, B.D and Martin, J.B (1994) Internal variable formulations of problems in elastoplasticity:

constitutive and algorithmic aspects, Appl Mech Rev., Vol 47, No 9, 429456

Rockafellar, R.T (1970) Convex analysis, Princeton University Press, New Jersey

Roscoe, K.H and Burland, J.B (1968) On the generalised behaviour of ‘wet’ clay, Engineering plastic-ity, ed Heyman, J and Leckie, F.A., Cambridge University Press, 535610

Rouainia, M and Muir Wood, D (1998) A kinematic hardening model for structured clays, The geotechnics of hard soils – soft rocks, ed Evangelista and Picarelly, Balkema, Rotterdam,

817824

Schofield, A.N and Wroth, C.P (1968) Critical state soil mechanics, McGraw-Hill, London

Sewell, M.J (1987) Maximum and minimum principles, Cambridge University Press

Shaw, P and Brown, S.F (1988) Behaviour of granular materials under repeated load biaxial and

triaxial stress conditions, Géotechnique, Vol 38, No 4, 627634

Stallebrass, S.E and Taylor, R.N (1997) The development and evaluation of a constitutive model for

the prediction of ground movements in overconsolidated clay, Géotechnique, Vol 47, No 2,

235254

Terzaghi, K (1943) Theoretical soil mechanics, Wiley, New York

Truesdell, C (1977) A first course in rational continuum mechanics, Academic, New York

Trang 5

References 343

Vaid, Y.P and Campanella, R.G (1977) Time dependent behaviour of undisturbed clay, J Geotech Eng Div., ASCE, Vol 103, No 7, 693709

Valanis, K.C (1975) On the foundations of endochronic theory of viscoplasticity, Arch of Mech., Vol

27, 857868

Whittle, A.J (1993) Evaluation of a constitutive model for overconsolidated clays, Géotechnique, Vol

43, No 2, 289313

Ziegler, H (1959) A modification of Prager’s hardening rule, Q Appl Mech., Vol 17, 5565

Ziegler, H (1977, 1983) An introduction to thermomechanics, North Holland, Amsterdam (2nd ed

1983)

Zienciewicz, O.C (1977) The finite element method, 3rd ed., McGraw-Hill, London

Zytynski, M., Randolph, M.F., Nova, R., and Wroth, C.P (1978) On modelling the

unloading-reloading behaviour of soils, Int J Num Anal Methods Geomechanics, Vol 2, 8793

Trang 6

Index

A

adiabatic 43–46, 49, 66, 67, 79, 256

advanced plasticity models 118

anisotropic elasticity 172

anisotropy 120, 163, 164, 169, 172, 210,

340

associated flow rule 18, 21, 28, 29, 32,

58, 69, 74, 83, 86, 96, 100, 108–114,

118, 130, 155, 176–179, 186, 209, 210,

261, 342

B

back stress 27, 68, 89, 97, 108, 123, 130,

149, 153, 179, 180, 184, 207, 209

back stress function 144

backbone curve 192, 232, 233

bar structure 279

bending moment 299, 300

bending stiffness 298

body force 9, 245, 246

bounding surface plasicity 105–110,

118

bulk modulus 14, 44, 79, 162, 190

C

canonical yield function 17, 58, 268–

271, 275, 330, 334, 335

Cauchy small strain tensor 7

Cauchy stress 8, 11, 286

classical thermodynamics 35, 36, 47,

59, 256, 320

classical thermodynamics of fluids 40,

43, 48

Clausius-Duhem inequality 38, 161

cohesionless soils 209 cohesive material 270, 340 compatibility 8–11, 278, 280, 282 complementary energy 48, 77, 164, 168,

170, 172, 318 compliance matrix 22, 23, 49, 66, 171 conjugate variables 57

conservation of energy 37 consistency condition 20–25, 63, 91, 97,

109, 111, 115, 124, 145, 179, 197, 239 constitutive behaviour 10, 21, 42, 59,

69, 74, 75, 88, 91–93, 96–98, 102, 124,

125, 148, 149, 155, 180, 190, 195, 197,

254, 258, 262, 266, 302, 313 constitutive models 1–4, 8, 11, 19, 62,

65, 74, 79, 115, 117, 156, 182, 210,

220, 255, 256, 259, 262, 273, 304, 340–

343 constraints 1, 71, 73, 84, 205, 264–266,

270, 278–282, 302 continuous field of yield surfaces 119,

151, 155, 340 continuous hyperplastic model 142,

177, 191 continuous hyperplasticity 133, 146,

155, 203, 210, 224, 300, 341 continuous material memory 119 continuum mechanics 6, 8–11, 48, 243,

253, 260, 318, 342 contraction 18, 87 convective derivative 9, 242 convex analysis 4, 17, 217, 263–266,

271, 275, 304, 306, 321, 325, 330, 331,

334 convex function 265, 328–331, 334 convex sets 327, 334

Trang 7

346 Index

convexity 58, 321

coupled materials 32, 176

creep 211, 237, 238

creep rupture 238

critical state 28, 87, 186, 187, 191, 195,

203, 204, 209, 210, 340

cross-coupling 112, 180, 184

D

damage mechanics 274

damage parameter 274, 277

Darcy’s law for fluid flow 254

decoupled materials 103

deformation gradient tensor 6

degenerate transform 57, 263

density 9, 47, 172, 242–244, 254, 286

deviatoric stress 78, 84, 94, 99, 129, 154,

159, 182, 200, 201

differential 10, 11, 20, 47, 57, 59, 68, 74,

88, 120, 138, 150, 181, 193, 216, 217,

225–227, 232, 233, 247, 250, 255, 264,

295, 296, 299, 300, 306–310, 313, 322–

324, 328

dilation 29, 73, 86, 205, 259, 261, 270,

271, 340

Dirac impulse function 306

displacement 6–11, 31, 114, 179, 257,

290–297

displacement gradient tensor 6

dissipation 3, 5, 30, 37, 40, 41, 50, 53–

62, 66–75, 82–103, 121–131, 136, 139,

143–145, 149, 153, 161, 176, 178, 183,

188–196, 204–217, 221, 223, 229, 241,

249, 251, 256, 257, 262, 268–271, 275,

278, 284, 285, 289, 293, 294, 297, 298,

301–304, 332–335, 339

dissipation functional 136, 138, 143,

144, 152, 178, 230

dissipative coupling 176

dissipative generalised stress 3, 54, 56,

75, 91, 94, 96, 99, 125, 129, 152, 178,

213, 261

dissipative generalised stress function

136, 143, 148, 191

dissipative materials 48, 54, 274, 304,

342

Drucker’s stability postulate 4

Drucker-Prager model 87, 261

dry density 243, 250

dummy subscripts 21

E

effective angle of friction 259 effective stresses 159–162, 187 elastic material 13, 15, 133, 288, 339 elastic strains 16, 19, 20, 176 elasticity 11–16, 20, 77–80, 111, 162–

164, 209, 265, 277, 286, 288, 339, 340 elastic-viscoplastic model 216 elliptical yield surfaces 178, 186 end bearing 293–296

endochronic theory 117, 118, 343 energy functional 134, 193, 230 energy function 42, 45, 47, 49, 68, 80,

120, 137, 190, 215, 256, 298 entropy 36, 38, 40–46, 55, 65–70, 74, 75,

80, 248–251, 302, 320 entropy flux 54, 249, 301 equation of state 36, 45, 46 equations of motion 248, 254 equilibrium 8–11, 32, 36, 41, 51, 248,

278, 280, 295, 296 Euclidian distance 326 Euler’s theorem 56, 136, 212, 323 Euler-Almansi tensor 7

Eulerian formulation 7, 242, 250 evolution equations 19, 50, 53, 65, 142,

230 extensive quantities 40, 47, 242, 251 extremum principles 2, 303, 321

F

Fenchel dual 265, 266, 275, 304, 321, 331–335

fibre-reinforced material 288 finite element 2, 62, 112, 138, 172, 230,

343 First Law 36, 38, 246 flexible pile 294, 298 flow potential 213, 215, 218, 219, 222,

224, 230, 233, 270, 277, 303 flow potential functional 230, 234 flow rule 17, 22, 24, 29, 57, 63, 83–86,

89, 94, 99, 101, 103, 111, 122, 143–

146, 179, 210, 261, 335 fluid 40, 242–248, 253–262, 315 fluxes 241–243, 250–254, 262 force potential 213, 215, 218, 219, 223,

225, 251–256, 259, 261, 268, 275, 277,

303 force potential functional 229, 230

Trang 8

Index 347

Fourier heat conduction law 261

Frechet derivative/differential 144, 193,

195, 295, 298, 302, 308–310

free energy functional 134, 143, 144,

196, 234, 296

friction 28, 29, 32, 37, 74, 84–86, 159,

205, 209, 210, 261, 271, 340

frictional material 28–32, 69, 90, 103,

204, 210

G

gas constant 45

Gateaux derivative/differential 307, 308

gauge function 264, 268, 269, 304, 330–

335

Gauss’s divergence theorem 243

generalised fluxes 242

generalised forces 242, 296

generalised failure criterion 207

generalised signum function 82

generalised stress 53–58, 65, 68, 70, 73,

75, 82, 85–93, 96, 97, 123, 124, 130,

135, 138, 144, 150, 192, 195, 205, 207,

213, 229, 261, 268, 270, 278, 289, 303,

332

generalised stress function 135, 137,

144, 145, 194, 229

generalised tensorial signum function

83, 306

generalised thermodynamics 1, 3, 54,

133, 155, 341

geotechnical materials 2, 28, 74, 142,

160, 205, 210, 222, 271, 339

gravitational acceleration vector 9

Green-Lagrange strain tensor 7

H

hardening laws 28

hardening modulus 22, 24, 109, 110,

148

hardening parameters 18, 19

hardening plasticity 19, 22, 24, 342

heat capacity 259

heat engine 39, 40

heat flow/flux 36, 39, 41, 44, 50, 66, 74,

161, 245, 249, 262, 301

heat supply 37, 40, 41, 54

Heaviside step function 306, 336

Hessian 70, 71, 316

hierarchy of models 15, 80, 102, 220

homogeneous first-order function 56,

58, 70, 73, 75, 121, 188, 229, 269, 303,

333 homogeneous function 88, 212, 214,

269, 318, 331 Hooke’s law 95, 100, 130, 155 hyperbolic stress-strain law 191, 192 hyperelastic material 14, 15, 48 hyperelasticity 15, 20, 253, 273 hypoelastic material 13, 15 hypoelasticity 15, 20 hypoplasticity 117 hysteretic behaviour 28, 107, 110, 111,

162, 200, 233

I

Il'iushin's postulate of plasticity 32 image point 106–110

incompressibility condition 72, 94, 98–

102, 128, 130, 152, 155 incompressibility constraint 79, 287 incompressible elasticity 78, 81 incremental response 48, 62, 68, 69, 74,

75, 90, 92, 96, 123, 124, 138, 145, 150,

215, 230, 234, 239, 303, 308 incremental strain vector 107, 108 incremental stress vector 106, 107, 116 incremental stress-strain relationship

2, 19–21, 64, 112, 142, 239 indicator function 264–266, 270, 271, 329–335

inertial effects 261, 262 initial and boundary conditions 8, 255 initial stiffness 147, 162, 192, 234, 276 intensive quantities 40, 253

internal coordinate 134, 137, 228, 285,

290 internal energy 36–46, 49, 54, 55, 66,

78, 246–255, 279–282, 303, 320 internal function 103, 121, 134–137,

155, 179, 198, 228–234, 342 internal variables 1, 10, 33, 49, 53, 54,

71, 74, 84, 103, 120–125, 131–135,

142, 155, 173, 198, 224, 225, 228–230,

241, 242, 251, 264, 278, 280, 289, 301,

330 intrinsic time 117 invariants of the tensor 311 irrecoverable behaviour 15 irreversible behaviour 50, 51, 117, 274

Trang 9

348 Index

isentropic 43–46, 67

isothermal 14, 43, 46–49, 66, 74, 79,

102, 258, 259, 287

isotropic elasticity 78, 83

isotropic hardening 25–28, 92–95, 101,

103, 210, 341

isotropic thermoelasticity 49, 79

Iwan model 125–127, 149, 150

K

kinematic hardening 27, 28, 97–103,

112–115, 119, 121, 123, 130, 142, 147,

151, 155, 156, 185, 186, 196, 207, 209,

228, 231, 233, 342

kinematic internal variable 53, 103,

120, 175, 225, 257

kinetic energy 245, 246, 255

L

Lagrangian formulation 7, 242, 250

Lagrangian multiplier 72, 87, 206, 261,

278, 280, 287

large displacement theory 9

large strain analysis 5, 242

Laws of Thermodynamics 15, 162, 210

Legendre transform 4, 42, 43, 46–49,

56, 57, 68, 69, 72, 73, 82, 88, 89, 122,

123, 137, 143, 144, 167, 205, 212, 213,

255, 263, 273, 309, 315–324, 331, 333

Legendre-Fenchel transformation 82,

230, 256, 261, 321, 331

limiting strain 182

linear elastic region 100, 119, 179, 181

linear elasticity 13, 14, 78, 265, 318

linear hardening 27, 96–98, 127, 128,

341

link to conventional plasticity 102, 121

loading history 110, 159, 172

loading surface 106, 107, 118

logarithmic stress-strain curve 180, 191

M

Macaulay brackets 92, 116, 179, 217

mapping rule 106, 118

Masing rules 28, 147, 151, 185

mass balance equations 244, 246, 254

mass flux 243

material derivative 242, 246, 250

Maxwell’s relations 43

mean stress 84, 159, 162, 169, 172, 202 mechanical dissipation 50, 55, 75, 86,

136, 161, 262, 302 mechanical power 36, 37 memory of stress reversals 120 micromechanical energy 209 Minkowski function 330 mixed invariants 313 Modified Cam-Clay model 162 modulus coupling 176 modulus of subgrade reaction 297 multiple internal variables 53, 120, 131,

135, 224–228, 231 multiple stress reversals 177 multiple surface models 111, 118, 125,

142 multisurface hyperplasticity 119

N

nested surface models 111, 118 non-associated plastic flow 2, 32, 204 non-dilative plasticity 271

non-dissipative materials 48 non-intersection condition 112–117 non-linear elasticity 1, 165

non-linear viscous behaviour 219 non-uniqueness 190

normal cone 329, 330, 333–335 normality 18, 31, 103, 123, 144 notation 5

O

one-dimensional elastoplasticity 81 Onsager reciprocity relationships 254 orthogonality condition 53, 56, 63, 226,

232, 296 overconsolidated clays 177, 187, 342,

343 overconsolidation ratio 172, 175, 200,

341

P

partial derivative/differential 307 partial Legendre transformations 319 passive variables 59, 122, 319 perfect gas 35, 36, 41, 44–46 perfect plasticity 18–23, 32, 81, 103, 233 permeability coefficient 259

pile capacity 290

Trang 10

Index 349

pin-jointed structures 277

Piola-Kirchhoff stress tensor 250

plastic moduli 148

plastic modulus function 151, 178, 192

plastic multiplier 18, 20, 23, 65, 108,

111, 207

plastic potential 2, 17–22, 29, 32, 33, 58,

86, 111, 122, 210, 261

plastic strain 16–29, 32, 33, 49, 57, 67,

73, 82–86, 89, 90, 93–99, 105–114,

117, 121–123, 126, 129, 131, 138, 144,

149, 150, 154, 156, 172–177, 180, 188,

189, 192, 207, 234, 261, 271, 274, 275,

291, 335

plastic strain increments 16, 18, 69, 173

plastic strain rate tensor 88, 121

plastic work 19, 24, 29, 30, 90, 209, 210,

335

plasticity theory 1–5, 16, 18, 28, 33, 35,

57, 58, 62, 89, 107, 117, 143, 177, 263,

264, 300, 304, 321, 323, 334, 335

Poisson's ratio 162

polar function 269, 270, 304, 333–335

pore fluid 160, 161, 243–249, 253, 254,

257

pore water pressure 160

porosity 243, 256

porous continua 241, 339

porous medium 241–243, 248, 253

potential functionals 142, 148, 151, 177,

210

potential functions 2, 74, 88, 89, 93, 98,

102, 121, 125, 128, 156, 209, 238, 241,

254, 258, 262, 303, 341

potentials 2, 59, 74, 122, 173, 176, 213,

217, 232, 262, 264, 302, 303, 313, 315,

340

power input 37, 160, 161

Prager’s translation rule 28, 114

preconsolidation pressure 162, 172–

175, 196, 198, 235

pressure 36, 40–47, 74, 160–163, 166,

172, 175, 196, 202, 204, 210, 245, 247,

250, 253, 258, 259, 320, 341

principal stretches 287

prismatic beams 284

property 36, 38, 42, 46, 54, 57, 74, 88,

229, 253, 301, 331

proportional loading 131, 155, 180–183

Q

quadratic functions 78, 318 quasi-homogeneous dissipation function 254

R

rate effects 211, 239 rate process theory 221, 223, 233, 236 rate-dependent materials 212, 215, 221,

228, 230, 239, 273 rate-dependent models 224 rate-independent materials 1, 3, 51,

117, 136, 230, 303 rates of the plastic strains 87 rational mechanics 49, 133, 155 rational thermodynamics 2, 3 redundant structure 281 reservoir 38–40 reversibility 40, 117, 191 reversible materials 40 reversible processes 41, 49, 341 rigid pile 290, 296, 297 rigid-plastic materials 84 rubber elasticity 286, 287

S

saturated granular materials 160 secant shear stiffness 177, 191 Second Law 3, 38, 54, 161, 248 shear modulus 14, 79, 162, 188, 290,

341 sign convention 8 simple shear 16, 26, 94, 99, 102 singular transformation 58, 71, 73, 138,

230, 320, 321, 324 skin friction 293 sliding element 97, 98, 126–128, 134 slip stress 97, 98, 126, 134, 149 small deformations 6–8 small displacement 7, 8 small strain analysis 5–8, 47 small strain region 179 small strain stiffness 162 small strains 6–8, 50, 162, 183, 203, 257,

286 soil skeleton 161, 242–250, 253–261 soils 2, 28, 32, 33, 74, 107, 112, 118, 119,

159, 162, 163, 172, 174, 183, 186, 191,

195, 198, 204, 221, 339–343

Ngày đăng: 10/08/2014, 11:21

TỪ KHÓA LIÊN QUAN