1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

dohrmann Episode 1 Part 8 pot

10 68 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 204,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Conclusions A transition element for meshes containing uniform strain hexahedral and tetrahedral elements is presented.. Meshes containing the transition element satisfy first-order patc

Trang 1

to those obtained using existing methods based on master-slave concepts for connecting two meshes

5 Conclusions

A transition element for meshes containing uniform strain hexahedral and tetrahedral elements is presented Meshes containing the transition element satisfy first-order patch tests and converge for second-order patch tests under mesh refinement Comparisons with all-hexahedral meshes show that mixed-element meshes do not cause any significant degradation

in accuracy convergence rates or locking behavior for a variety of problems Guidelines are established for cxt ending the present approach to higher-order elements and for connecting dissimilar finite element meshes at a shared boundary

References

1 D P Flanagan and T Belytschko, ‘A Uniform Strain Hexahedron and Quadrilateral

wit h Orthogonal Hourglass Control’, International Journal for Numerical Methods in Engmecmng 17, 679-706 (1981).

2 C R Dohrmann, S W Key, M W Heinstein and J Jung, ‘A Least Squares Approach

for Uniform Strain Triangular and Tetrahedral Finite Elements’, International Journal for :Yumcrzcal Methods in Engineering, 42, 1181-1197 (1998).

3 S \\’ Key \l W Heinstein, C M Stone, F J Mello, M L Blanford and K G Budge,

A Suitable Low-Order, 8-Node Tetrahedral Finite Element for Solids’, to appear in

Intemlat~onal Journal for Numerical Methods in Engineering.

4 S J Owen S A Canann and S Saigal, ‘Pyramid Elements for Maintaining Tetrahe dra to Hexahedra Conformability’, Trends in Unstructured Mesh Generation,

AMD-Vol 220 ASME; 123-129 (1997)

5 K \f Heal hf L Hansen and K M Rickard, Maple V Learning Guide, Springer, New York Sew York, 1996

6 0 C Zienkiewicz and R L Taylor, The Finite Element Method, Vol 1, 4th Ed.,

McGraw Hill, New York, New York, 1989

7 C R Dohrmann, S W Key and M W Heinstein, ‘A Method for Connecting Dissimilar

Finite Element Meshes in Two Dimensions’, submitted to International Journal for Numerical methods in Engineering.

Trang 2

Table 1: Example 1 strain energies for meshes 3m, 6m, 9m and 9h.

v

0.0

0.1

0.2

0.3

0.4

0.499

0.4999

0.49999

9h

Edev 278 306 333 361 389 416 417 417

E.Ol

139 111 83.3 55.6 27.8 0.27 2.78e-2 2.78e-3

Edev

302

332

362

393

423

454

454

454

E.ol

150 121 90.9 60.9 30.6 0.308 3.07e-2 3.07e-3

Edev 283 312 340 369 397 425 426 426

EVOl

142 113 85.2 56.9 28.5 0.285 2.85e2 2.85e-3

Edev 280 308 336 364 393 420 421 421

E.ol

140 112 84,2 56.1 28.1 0.281 2.81e-2 2.81e-3

Edev 280 308 336 364 393 420 421 421

E.Ol

140 112 84.2 56.1 28.1 0.281 2.81e-2 2.81e-3

Table 2: Example 2 strain energies for meshes 3m, 6m, 9m and 9h.

m

ma=

0.1 1029

0.2 944

0.3 871

0.4 809

0.499 755

0.4999 755

0.49999 755

0.09 0.09 0.11 0.17 14 1.4e2 1.4e3

1043 956 882 819 765 765

765 u 0.02 1045 0.01

0.02 958 0.01 0.02 884 0.01 0.01 821 0.003 0.04 767 0.02 0.18 767 0.06 0.10 767 0.03

1045 958 884 821 767 767 767

0 0 0 0 0 0 0

1047 960 886 823 769 768 768

Table 3: Example 3 strain energies for meshes 3m and 3h.

3h

E.Ol

0.0835 0.0908 0.105 0.136 0.232 4.62 1.83 2.13 16.2

EVO1

0.0174 0.0208 0.0262 0.0359 0.0621 3.28 21.4 117 854

.&ev 1132 1029 944 871 809 760 769 772 773

Edev 1132 1029 943 871 809 756 759 794 863

0.0 0.1 0.2 0.3 0.4 0.499 0.4999 0.49999 0.499999

13

Trang 3

5

3

1

2

Trang 4

Figure 2: Connecting face of transitionelement

15

Trang 5

Figure 3: Element geometry of uniform strain tetrahedron.

Trang 6

Figure 4: Mesh 6m with 12 transition elements and 92 hexahedral elements removed.

Trang 7

1.8

1.6

1.4

1.2

1

0.8’

-2.2

x x mixed–element meshes

❑ H all-hexahedral meshes

log(lln)

–1 2 -1 -0.8

Trang 8

I.8

1.6

1.4

1.2

1

O.E

-:

x x mixed–element meshes

Q ❑ all–hexahedral meshes

log(lln)

Figure 6: Energy norm of the error for Example 1(v= 0.4999).

Trang 9

1.4

1.2

1

0.8

0.6

0.4

o.~

log(lhz)

Figure 7: Energy norm of the error for Example 2 (v = 0.3).

Trang 10

-??.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

Iog(lln) Figure 8: Energy nom of the error for Example 2 (v = 0.4999).

21

Ngày đăng: 06/08/2014, 11:20

TỪ KHÓA LIÊN QUAN