Conclusions A transition element for meshes containing uniform strain hexahedral and tetrahedral elements is presented.. Meshes containing the transition element satisfy first-order patc
Trang 1to those obtained using existing methods based on master-slave concepts for connecting two meshes
5 Conclusions
A transition element for meshes containing uniform strain hexahedral and tetrahedral elements is presented Meshes containing the transition element satisfy first-order patch tests and converge for second-order patch tests under mesh refinement Comparisons with all-hexahedral meshes show that mixed-element meshes do not cause any significant degradation
in accuracy convergence rates or locking behavior for a variety of problems Guidelines are established for cxt ending the present approach to higher-order elements and for connecting dissimilar finite element meshes at a shared boundary
References
1 D P Flanagan and T Belytschko, ‘A Uniform Strain Hexahedron and Quadrilateral
wit h Orthogonal Hourglass Control’, International Journal for Numerical Methods in Engmecmng 17, 679-706 (1981).
2 C R Dohrmann, S W Key, M W Heinstein and J Jung, ‘A Least Squares Approach
for Uniform Strain Triangular and Tetrahedral Finite Elements’, International Journal for :Yumcrzcal Methods in Engineering, 42, 1181-1197 (1998).
3 S \\’ Key \l W Heinstein, C M Stone, F J Mello, M L Blanford and K G Budge,
A Suitable Low-Order, 8-Node Tetrahedral Finite Element for Solids’, to appear in
Intemlat~onal Journal for Numerical Methods in Engineering.
4 S J Owen S A Canann and S Saigal, ‘Pyramid Elements for Maintaining Tetrahe dra to Hexahedra Conformability’, Trends in Unstructured Mesh Generation,
AMD-Vol 220 ASME; 123-129 (1997)
5 K \f Heal hf L Hansen and K M Rickard, Maple V Learning Guide, Springer, New York Sew York, 1996
6 0 C Zienkiewicz and R L Taylor, The Finite Element Method, Vol 1, 4th Ed.,
McGraw Hill, New York, New York, 1989
7 C R Dohrmann, S W Key and M W Heinstein, ‘A Method for Connecting Dissimilar
Finite Element Meshes in Two Dimensions’, submitted to International Journal for Numerical methods in Engineering.
Trang 2Table 1: Example 1 strain energies for meshes 3m, 6m, 9m and 9h.
v
0.0
0.1
0.2
0.3
0.4
0.499
0.4999
0.49999
9h
Edev 278 306 333 361 389 416 417 417
E.Ol
139 111 83.3 55.6 27.8 0.27 2.78e-2 2.78e-3
Edev
302
332
362
393
423
454
454
454
E.ol
150 121 90.9 60.9 30.6 0.308 3.07e-2 3.07e-3
Edev 283 312 340 369 397 425 426 426
EVOl
142 113 85.2 56.9 28.5 0.285 2.85e2 2.85e-3
Edev 280 308 336 364 393 420 421 421
E.ol
140 112 84,2 56.1 28.1 0.281 2.81e-2 2.81e-3
Edev 280 308 336 364 393 420 421 421
E.Ol
140 112 84.2 56.1 28.1 0.281 2.81e-2 2.81e-3
Table 2: Example 2 strain energies for meshes 3m, 6m, 9m and 9h.
m
ma=
0.1 1029
0.2 944
0.3 871
0.4 809
0.499 755
0.4999 755
0.49999 755
0.09 0.09 0.11 0.17 14 1.4e2 1.4e3
1043 956 882 819 765 765
765 u 0.02 1045 0.01
0.02 958 0.01 0.02 884 0.01 0.01 821 0.003 0.04 767 0.02 0.18 767 0.06 0.10 767 0.03
1045 958 884 821 767 767 767
0 0 0 0 0 0 0
1047 960 886 823 769 768 768
Table 3: Example 3 strain energies for meshes 3m and 3h.
3h
E.Ol
0.0835 0.0908 0.105 0.136 0.232 4.62 1.83 2.13 16.2
EVO1
0.0174 0.0208 0.0262 0.0359 0.0621 3.28 21.4 117 854
.&ev 1132 1029 944 871 809 760 769 772 773
Edev 1132 1029 943 871 809 756 759 794 863
0.0 0.1 0.2 0.3 0.4 0.499 0.4999 0.49999 0.499999
13
Trang 35
3
1
2
Trang 4Figure 2: Connecting face of transitionelement
15
Trang 5Figure 3: Element geometry of uniform strain tetrahedron.
Trang 6Figure 4: Mesh 6m with 12 transition elements and 92 hexahedral elements removed.
Trang 71.8
1.6
1.4
1.2
1
0.8’
-2.2
x x mixed–element meshes
❑ H all-hexahedral meshes
log(lln)
–1 2 -1 -0.8
Trang 8I.8
1.6
1.4
1.2
1
O.E
-:
x x mixed–element meshes
Q ❑ all–hexahedral meshes
log(lln)
Figure 6: Energy norm of the error for Example 1(v= 0.4999).
Trang 91.4
1.2
1
0.8
0.6
0.4
o.~
log(lhz)
Figure 7: Energy norm of the error for Example 2 (v = 0.3).
Trang 10-??.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
Iog(lln) Figure 8: Energy nom of the error for Example 2 (v = 0.4999).
21