Sau đó Lý sinh được xác định như là một ngành khoa học nghiên cứu các cơ chế vật lí, đặc biệt là cơ chế hoá lý của các quá trình xảy ra trong hệ thống sống ở mức độ phân tử, tế bào, mô v
Trang 1ĐOÀN SUY NGHĨ (chủ biên)
LÊ VĂN TRỌNG
LÝ SINH HỌC
Huế 2005
Trang 2LỜI NÓI ĐẦU
Ở Việt Nam và trên thế giới Lý sinh (biophysics) là môn học cơ sở được dạy trong các trường đại học Khoa học, đai học Y - Dược, đại học Nông nghiệp, đại học Sư phạm, đại học Thuỷ sản v.v Hiểu được Lý sinh, cùng với một số môn khoa học cơ bản khác sẽ hiểu được các nguyên lí của các quá trình sinh học, đặc biệt là cơ chế hoá lí và bản chất vật lý của các hiện tượng sống Để viết được giáo trình Lý sinh vừa bao hàm những kiến thức cơ bản vừa cập nhật những thông tin mới, thật là một công việc hết sức khó khăn Nhưng với mong muốn phục vụ kịp thời kiến thức cơ bản về Lý sinh trong khuôn khổ của dự án Giáo dục đại học mức B, chúng tôi đã mạnh dạn viết giáo trình này Giáo trình
Lý sinh không chỉ phục vụ cho các sinh viên của các trường thuộc Đại học Huế mà còn là tài liệu cần thiết cho những ai quan tâm đến chuyên ngành Lý sinh Phân công nội dung:
- Mở đầu, chương 1, 2, 3, 7, 8, 9 do Tiến sỹ Đoàn Suy Nghĩ biên soạn
- Chương 4, 5, 6 do Tiến sỹ Lê Văn Trọng biên soạn
Để viết được giáo trình này, chúng tôi xin chân thành cảm ơn Ban dự án Giáo dục đại học của Đại học Huế, GS TS Nguyễn Thị Kim Ngân và GS TSKH Lê Doãn Diên đã đọc và đóng góp những ý kiến quí báu cho giáo trình này
Để giáo trình ngày càng hoàn thiện, chúng tôi mong nhận được sự góp ý của người đọc gần xa
Chủ biên
Tiến sỹ: Đoàn Suy Nghĩ
Trang 3MỞ ĐẦU
LÝ SINH, SỰ HÌNH THÀNH VÀ PHÁT TRIỂN
Sự áp dụng kiến thức vật lý vào nghiên cứu sinh học đã được thực hiện vào cuối thế kỷ XVIII Năm 1780 hai nhà khoa học Pháp là Lavoadie và Laplace đã tiến hành thí nghiệm
để khảo sát tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ thống sống Năm 1791, Galvani, giáo sư giải phẫu trường đại học Bolon (Italia) đã công bố kết quả nghiên cứu trong quyển sách "Bàn về các lực điện động vật trong co cơ", khẳng định có tồn tại dòng điện sinh vật Năm 1859, Raymond đã phát hiện phần trước và phần sau cầu mắt động vật có xương sống tồn tại một hiệu điện thế và đo được giá trị từ 10 đến 38mV, gọi là điện thế tĩnh (hay điện thế nghỉ ngơi) Năm 1865, Holgreen phát hiện được giá trị hiệu điện thế giữa phần trước và phần sau cầu mắt động vật có xương sống sẽ tăng lên khi mắt được chiếu sáng Sau này các nhà khoa học xác định, đó chính là điện thế hoạt động (hay điện thế hưng phấn) Năm 1875, Calton khẳng định khi mắt được chiếu sáng, không những điện cầu mắt tăng lên như Holgreen đã phát hiện mà điện ở vùng thị giác trên bán cầu đại não cũng tăng lên Sau này các nhà khoa học xác định đó chính là dòng điện hưng phấn xuất hiện khi mắt được chiếu sáng, đã lan truyền theo dây thần kinh thị giác tới vùng thị giác trên bán cầu đại não, dẫn tới hiệu ứng sinh học là cảm nhận được ánh sáng Năm 1922, Erlanger và Gasser dùng dao động ký âm cực để đo dòng điện hưng phấn xuất hiện trong dây thần kinh Năm 1922,Viện Lý sinh ở Liên Xô cũ được thành lập
Năm 1929, Berger ghi được điện não đồ của động vật Lịch sử hình thành Lý sinh đã được Taruxop, giáo sư trường Đai học tổng hợp Lomonoxop khẳng định: "Lý sinh được xem như là một khoa học bắt đầu được hình thành từ thế kỷ XIX"
Thế kỷ XX là thế kỷ phát triển mạnh mẽ những nghiên cứu khoa học về Lý sinh trong các lĩnh vực: Nhiệt động học, động học của các quá trình sinh vật, vận chuyển chất qua màng tế bào, quang sinh học và phóng xạ sinh học v.v
Thời kỳ đầu Lý Sinh được xác định như là một ngành khoa học nghiên cứu các hiện tượng vật lý trong hệ thống sống Sau đó Lý sinh được xác định như là một ngành khoa học nghiên cứu các cơ chế vật lí, đặc biệt là cơ chế hoá lý của các quá trình xảy ra trong
hệ thống sống ở mức độ phân tử, tế bào, mô và cơ thể
Bước sang thế kỷ XXI, hàng loạt vấn đề đang được đặt ra cho các nhà Lý sinh cần phải nghiên cứu Đó là năng lượng sinh học, sự chuyển hoá năng lượng và sử dụng năng lượng của hệ thống sống? Bản chất và cơ chế hình thành điện thế sinh vật? Hiện tượng phân cực ở trong hệ thống sống xảy ra như thế nào và có gì khác so với ở hệ vật lý ? Bản chất của quá trình hưng phấn là vấn đề cần phải tiếp tục nghiên cứu
Các chỉ số đặc trưng về vật lý và hoá lý đối với tế bào, mô, cơ quan, cơ thể có mối liên quan như thế nào trong hệ thống tiến hoá ? Vấn đề tự điều chỉnh các quá trình sinh học của cơ thể sống trước những thay đổi của yếu tố môi trường cũng đang được các nhà Lý sinh quan tâm nghiên cứu Sinh học phóng xạ hiện đang thu hút nhiều nhà khoa học đi sâu nghiên cứu nhằm phục vụ cho công tác chọn giống mới, bảo quản lương thực, thực phẩm, công cuộc chinh phục vũ trụ, sử dụng năng lượng hạt nhân vì mục đích hoà bình
Trang 4và không loại trừ khả năng có cuộc chạy đua vũ trang trong việc nắm giữ "đòn hạt nhân đầu tiên" với tham vọng bá quyền thế giới ?
Trang 5Chương 1
NHIỆT ĐỘNG HỌC HỆ SINH VẬT
I Nhiệt động học hệ sinh vật và hướng nghiên cứu
Nhiệt động học hệ sinh vật là lĩnh vực nghiên cứu hiệu ứng năng lượng, sự chuyển hoá giữa các dạng năng lượng, khả năng tiến triển, chiều hướng và giới hạn tự diễn biến của các quá trình xảy ra trong hệ thống sống
Cơ thể sống trong quá trình sinh trưởng và phát triển đều có sử dụng năng lượng vì vậy nhiệt động học hệ sinh vật là lĩnh vực cần được nghiên cứu Đối tượng nghiên cứu của nhiệt động học hệ sinh vật là cơ thể sống, đó là một hệ mở do luôn xảy ra sự trao đổi vật chất và năng lượng với môi trường xung quanh, có khả năng tự điều chỉnh, tự sinh sản nên khác với hệ vật lí như chất rắn, chất lỏng hay chất khí Hiện nay nhiệt động học hệ sinh vật có các hướng nghiên cứu chủ yếu sau:
- Nghiên cứu sự chuyển biến năng lượng ở mức độ phân tử, tế bào, mô, cơ quan hay toàn
bộ cơ thể khi ở trạng thái sinh lý bình thường và trạng thái đang hoạt động Xác định hiệu suất sử dụng năng lượng của các quá trình sinh vật và năng lượng liên kết trong các liên kết của các cao phân tử sinh học
- Nghiên cứu tính chất nhiệt động của các quá trình diễn ra trong cơ thể sống như quá trình khuyếch tán, thẩm thấu, vận chuyển tích cực
- Nghiên cứu cơ chế tác động của sự thay đổi các yếu tố môi trường lên quá trình chuyển hoá năng lượng và sự trao đổi năng lượng giữa cơ thể sống với môi trường
II Một số khái niệm và đại lượng cơ bản
- Hệ: Hệ là một vật thể hay một nhóm vật thể được dùng làm đối tượng để nghiên cứu
Ví dụ khi chọn cá thể để nghiên cứu thì cá thể là một hệ còn khi chọn quần thể để nghiên cứu thì quần thể là một hệ
- Hệ cô lập: Là hệ không có sự trao đổi vật chất và năng lượng giữa hệ với môi trường xung quanh Trên thực tế khó xác định được một hệ cô lập hoàn toàn nhưng ở qui mô thí nghiệm các nhà khoa học có thể thiết kế được hệ cô lập như bom nhiệt lượng dùng để nghiên cứu hiệu ứng nhiệt của các phản ứng oxy hóa
- Hệ kín: Là hệ không trao đổi vật chất với môi trường xung quanh nhưng có trao đổi năng lượng với môi trường xung quanh
- Hệ mở: Là hệ có trao đổi cả vật chất và năng lượng với môi trường xung quanh Ví dụ:
cơ thể sống là một hệ mở
- Tham số trạng thái: Là các đại lượng đặc trưng cho trạng thái của một hệ, ví dụ như nhiệt độ, áp suất, thể tích, nội năng, entropi
- Trạng thái cân bằng: Là trạng thái trong đó các tham số trạng thái đạt một giá trị nhất định và không đổi theo thời gian
- Quá trình cân bằng: Là quá trình trong đó các tham số trạng thái thay đổi với tốc độ chậm tới mức sao cho tại mỗi thời điểm có thể xem như trạng thái của hệ là trạng thái cân bằng
- Quá trình đẳng nhiệt, đẳng áp, đẳng tích là quá trình diễn ra trong đó nhiệt độ, áp suất
và thể tích luôn không đổi trong suốt quá trình diễn ra
Trang 6- Quá trình thuận nghịch: Là quá trình biến đổi mà khi trở về trạng thái ban đầu không kèm theo bất cứ một sự biến đổi nào của môi trường xung quanh
- Quá trình bất thuận nghịch: Là quá trình biến đổi mà khi trở về trạng thái ban đầu làm thay đổi môi trường xung quanh
- Hàm trạng thái: Một đại lượng được xem là một hàm trạng thái, đặc trưng cho trạng thái của hệ, khi sự biến thiên giá trị của nó trong bất cứ quá trình nào cũng chỉ phụ thuộc vào giá trị đầu và giá trị cuối mà không phụ thuộc vào con đường chuyển biến Nội năng (U), năng lượng tự do (F), thế nhiệt động (Z hay G), entanpi (H), entropi (S) là những hàm trạng thái
- Năng lượng: Năng lượng là đại lượng có thể đo được, có thể biến đổi một cách định lượng luôn theo cùng một tỉ lệ thành nhiệt lượng Năng lượng phản ánh khả năng sinh công của một hệ Đơn vị dùng để đo năng lượng là Calo (Cal) hay Joule (J)
- Công và nhiệt: Đó là hai hình thức truyền năng lượng từ hệ này sang hệ khác Nếu như
sự truyền năng lượng từ hệ này sang hệ khác gắn liền với sự di chuyển vị trí của hệ thì sự truyền đó được thực hiện dưới dạng công Ví dụ khi chạy 100 mét thì năng lượng tiêu tốn
đã được dùng vào thực hiện công để di chuyển vị trí Nếu sự truyền năng lượng từ hệ này sang hệ khác làm tăng tốc độ chuyển động của phân tử ở hệ nhận năng lượng thì sự truyền đó được thực hiện dưới dạng nhiệt
Công và nhiệt là hàm số của quá trình vì chúng đều phụ thuộc vào cách chuyển biến
- Nội năng: Nội năng của một vật thể bao gồm động năng của các phân tử chuyển động
và thế năng tương tác do sự hút và đẩy lẫn nhau giữa các phân tử cùng với năng lượng của hạt nhân nguyên tử và năng lượng của các điện tử
III Định luật I nhiệt động học và những hệ quả của nó
Định luật I nhiệt động học được hình thành qua các công trình nghiên cứu của các tác giả như M V Lomonoxob (1744), G I Heccer (1836), R Majo (1842), Helmholtz (1849), Joule (1877) Định luật I nhiệt động học được phát biểu như sau:
"Trong một quá trình nếu năng lượng ở dạng này biến đi thì năng lượng ở dạng khác sẽ xuất hiện với lượng hoàn toàn tương đương với giá trị của năng lượng dạng ban đầu" Định luật I nhiệt động học bao gồm hai phần:
- Phần định tính khẳng định năng lượng không mất đi mà nó chỉ chuyển từ dạng này sang dạng khác
- Phần định lượng khẳng định giá trị năng lượng vẫn được bảo toàn (tức giữ nguyên giá trị khi qui đổi thành nhiệt lượng) khi chuyển từ dạng năng lượng này sang dạng năng lượng khác Giá trị năng lượng chỉ được bảo toàn khi quá trình xảy ra là quá trình thuận nghịch và hiệu suất của quá trình đạt 100% Đối với quá trình bất thuận nghịch, hiệu suất của quá trình nhỏ hơn 100% thì ngoài phần năng lượng truyền cho hệ phải cộng thêm phần năng lượng đã toả ra môi trường xung quanh
Biểu thức toán học của định luật I nhiệt động học: Một hệ cô lập ở trạng thái ban đầu có nội năng U1, nếu cung cấp cho hệ một nhiệt lượng Q thì một phần nhiệt lượng hệ sử dụng
để thực hiện công A, phần còn lại làm thay đổi trạng thái của hệ từ trạng thái ban đầu có nội năng U1 sang trạng thái mới có nội năng U2 (U2>U1) Từ nhận xét trên ta có biểu thức:
Q = ΔU + A (1.1)
Trang 7Trong đó ΔU = U2 - U1
Công thức (1.1) có thể viết dưới dạng:
ΔU = U1 - U1 = Q - A (1.2)
Đối với quá trình biến đổi vô cùng nhỏ, phương trình (1.2) có thể viết dưới dạng:
dU = δQ - δA (1.3)
dU: Chỉ sự biến đổi nội năng, là hàm số trạng thái
δQ và δA: Chỉ sự biến đổi nhiệt và công, là hàm số của quá trình
Từ biểu thức (1.2), định luật I nhiệt động học có thể phát biểu như sau:
"Sự biến thiên nội năng của hệ bằng nhiệt lượng do hệ nhận được trừ đi công do hệ đã thực hiện"
Từ định luật I nhiệt động học dẫn đến các hệ quả sau đây:
- Nếu hệ biến đổi theo một chu trình kín (có trạng thái đầu và trạng thái cuối trùng nhau) thì nội năng của hệ sẽ không thay đổi (U2 = U1→ΔU = 0)
- Khi cung cấp cho hệ một nhiệt lượng, nếu hệ không thực hiện công thì toàn bộ nhiệt lượng mà hệ nhận được sẽ làm tăng nội năng của hệ
Theo (1.2) ΔU = U2 - U1 = Q - A, nếu A = 0 → U2 - U1 = Q Hệ nhận nhiệt nên Q > 0 →
U2 - U1 = Q > 0 → U2 > U1
- Khi không cung cấp nhiệt lượng cho hệ mà hệ muốn thực hiện công thì chỉ có cách là làm giảm nội năng của hệ
Theo (1.2) ΔU = U2 - U1 = Q - A, nếu Q = 0 → U2 - U1 = -A
→ A = U1 - U2 Hệ muốn thực hiện công, tức A > 0
→ U1 - U2 > 0 → U1 > U2 Sau khi thực hiện công (tức A > 0), nội năng của hệ đã giảm
từ U1 xuống U2 nhỏ hơn
- Hệ thực hiện theo chu trình kín, nếu không cung cấp nhiệt lượng cho hệ thì hệ sẽ không
có khả năng sinh công
Theo (1.2) ΔU = Q - A, nếu hệ thực hiện theo chu trình kín, theo hệ quả 1 thì ΔU = 0 →
Q - A = 0 → Q = A
Do vậy, nếu Q = 0, tức không cung cấp nhiệt lượng cho hệ thì hệ cũng không có khả năng sinh công, tức A = 0 Hệ quả này, có thể phát biểu dưới dạng: "Không thể chế tạo được động cơ vĩnh cửu loại một, là loại động cơ không cần cung cấp năng lượng nhưng vẫn có khả năng sinh công"
IV Định luật Heccer
Được Heccer tìm ra năm 1836, sau này được các nhà khoa học xếp thuộc vào hệ quả của định luật I nhiệt động học Định luật Heccer phát biểu như sau: "Hiệu ứng nhiệt của các phản ứng hoá học chỉ phụ thuộc vào dạng và trạng thái của chất đầu và chất cuối mà không phụ thuộc vào cách chuyển biến"
Ví dụ: Phản ứng tạo khí CO2 từ than nguyên chất là cacbon (C) có thể tiến hành theo 2 cách sau:
Cách 1: Đốt trực tiếp than nguyên chất thành khí CO2 sẽ giải phóng nhiệt lượng là Q1 Phản ứng xảy ra:
Trang 8C + O2 → CO2 + Q1
Cách 2: Chuyển than nguyên chất thành CO theo phản ứng:
C +
2
1
O2 → CO + Q2
Từ CO chuyển tiếp thành CO2 theo phản ứng:
CO +
2
1
O2 → CO2 + Q3
Sơ đồ minh hoạ:
C
Q2 Q3
CO
Q1
CO2
Theo định luật Heccer, chất đầu tham gia phản ứng (C) và sản phẩm của phản ứng (CO2) giống nhau nên có hiệu ứng nhiệt giống nhau:
Q1 = Q2 + Q3
Trong thực nghiệm, hiệu ứng nhiệt của quá trình đốt than thành CO không thể đo trực tiếp được vì khi than cháy không bao giờ chỉ cho CO mà còn cho một ít CO2 Nhưng thực nghiệm lại đo trực tiếp được
Q1 = 97 KCal/M và Q3 = 68 KCal/M
Từ đó dễ dàng suy ra giá trị
Q2 = Q1 - Q3 = 97 KCal - 68 KCal
Q2 = 29 KCal/M
Định luật Heccer có ý nghĩa rất quan trọng đối với hệ sinh vật Trong hệ sinh vật diễn ra nhiều phản ứng phức tạp, cho đến nay vẫn còn nhiều phản ứng trung gian chưa có thể đo trực tiếp được hiệu ứng nhiệt Dựa vào định luật Heccer có thể giải quyết được khó khăn này
V Định luật I nhiệt động học áp dụng vào hệ sinh vật
Người đầu tiên tiến hành thí nghiệm để chứng minh tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ thống sống là hai nhà khoa học Pháp Lavoisier và Laplace vào năm 1780 Đối tượng thí nghiệm là chuột khoang Thí nghiệm cách ly cơ thể khỏi môi trường bên ngoài bằng cách nuôi chuột trong nhiệt lượng kế ở nhiệt độ 0oC Dùng một lượng thức ăn đã xác định trước để nuôi chuột thí nghiệm
Trong cơ thể chuột sẽ diễn ra các phản ứng phân huỷ thức ăn tới sản phẩm cuối cùng là khí CO2 và H2O, đồng thời giải phóng ra nhiệt lượng Q1 Nếu coi ở điều kiện 0oC, chuột đứng yên, không thực hiện công mà chỉ sử dụng nhiệt lượng giải phóng ra do oxy hoá
Trang 9thức ăn để cung cấp nhiệt lượng cho cơ thể và tỏa nhiệt ra môi trường, qua nhiệt kế đo được sự tăng nhiệt độ, theo công thức sẽ tính được nhiệt lượng Q1 Đồng thời lấy một lượng thức ăn tương đương với lượng thức ăn đã cho chuột ăn trước khi thí nghiệm đem đốt cháy trong bom nhiệt lượng kế cũng tới khí CO2 và H2O, giải phóng ra nhiệt lượng
Q2 So sánh hai kết quả thí nghiệm thấy giá trị Q1 tương đương với Q2 Điều này chứng tỏ nhiệt lượng giải phóng ra từ các phản ứng hoá sinh diễn ra trong cơ thể sống hoàn toàn tương đương với nhiệt lượng giải phóng ra từ các phản ứng ôxy hoá diễn ra ở ngoài cơ thể sống Nói cách khác, hiệu ứng nhiệt của quá trình ôxy hoá chất diễn ra ở trong cơ thể sống và hiệu ứng nhiệt của quá trình ôxy hoá chất diễn ra ở ngoài cơ thể sống là hoàn toàn tương đương
Để tăng độ chính xác của thí nghiệm, sau này có nhiều mô hình thí nghiệm của nhiều nhà nghiên cứu được tiến hành nhưng đáng chú ý nhất là của Atwater và Rosa vào năm
1904
Đối tượng thí nghiệm là người và thời gian thí nghiệm là một ngày đêm (24 giờ) Trong thời gian thí nghiệm, cho người tiêu thụ một lượng thức ăn nhất định, thông qua đo lượng khí ôxy hít vào (hay khí CO2 thở ra), nhiệt thải ra từ phân và nước tiểu sẽ tính được hiệu ứng nhiệt của các phản ứng phân huỷ thức ăn diễn ra ở cơ thể người trong 24 giờ Đồng thời đốt lượng thức ăn tương đương với lượng thức ăn mà người đã tiêu thụ ở trong bom nhiệt lượng kế sẽ đo được nhiệt lượng toả ra Kết quả thí nghiệm:
Hiệu ứng nhiệt của các phản ứng diễn ra ở cơ thể người trong 24 giờ:
Nhiệt lượng toả ra xung quanh : 1374 KCal
Nhiệt lượng toả ra do thở ra : 181 KCal
Nhiệt lượng toả ra do bốc hơi qua da: 227 KCal
Nhiệt do khí thải ra : 43 KCal
Nhiệt toả ra từ phân và nước tiểu : 23 KCal
Hiệu đính (do sai số) : 31 KCal
Tổng cộng nhiệt lượng thải ra : 1879 KCal Nhiệt lượng do thức ăn cung cấp:
56,8 gam Protein : 237 KCal
79,9 gam Gluxit : 335 KCal
140,0 gam Lipit : 1307 KCal
Tổng cộng : 1879 KCal
Lưu ý: Khi ôxy hoá 1 gam Protein ở trong bom nhiệt lượng kế tới khí CO2 và H2O, giải phóng ra 5,4 KCal còn trong cơ thể sống phân giải 1 gam Protein tới urê chỉ giải phóng khoảng 4,2 KCal Khi oxy hoá hoàn toàn 1 gam Gluxit, giải phóng khoảng 4,2 KCal còn ôxy hoá hoàn toàn 1 gam Lipit giải phóng từ 9,3 đến 9,5 KCal
Kết quả thí nghiệm của Atwater và Rosa khẳng định năng lượng chứa trong thức ăn sau khi cơ thể tiêu thụ đã chuyển thành năng lượng giải phóng thông qua quá trình phân giải bởi các phản ứng hoá sinh diễn ra trong cơ thể sống Năng lượng chứa trong thức ăn và năng lượng giải phóng ra sau khi cơ thể phân giải thức ăn là hoàn toàn tương đương Nhiệt lượng trong cơ thể người được chia làm hai loại là nhiệt lượng cơ bản (hay nhiệt lượng sơ cấp) và nhiệt lượng tích cực (hay nhiệt lượng thứ cấp) Nhiệt lượng cơ bản xuất hiện ngay sau khi cơ thể hấp thụ thức ăn và tiêu thụ ôxy để thực hiện phản ứng ôxy hoá
Trang 10đồng thời giải phóng ra nhiệt lượng Ví dụ khi cơ thể hấp thụ 1 phân tử gam (tức 1M) glucose, lập tức xảy ra phản ứng ôxy hoá đường và giải phóng ra 678 KCal (nhiệt lượng
cơ bản) Cơ thể sẽ sử dụng nhiệt lượng cơ bản vào các hoạt động sống, nếu còn dư sẽ được tích luỹ vào ATP Phần nhiệt lượng tích luỹ vào các hợp chất cao năng gọi là nhiệt lượng tích cực Trong cơ thể sống, nhiệt lượng cơ bản và nhiệt lượng tích cực có liên quan với nhau Nếu nhiệt lượng cơ bản nhiều mà cơ thể sử dụng ít thì nhiệt lượng tích cực sẽ tăng lên Nếu nhiệt lượng cơ bản không có thì không những nhiệt lượng tích cực bằng không mà cơ thể phải phân giải ATP, giải phóng ra năng lượng để cung cấp cho các hoạt động sống Ở trạng thái sinh lý bình thường, cơ thể sống sẽ duy trì mối tương quan nhất định giữa nhiệt lượng cơ bản và nhiệt lượng tích cực Ở mức độ tế bào, có khoảng 50% năng lượng của chất dinh dưỡng được tích luỹ vào ATP
VI Phương pháp nhiệt lượng kế gián tiếp và nguyên tắc hoạt động của cơ thể sống
Phương pháp đo nhiệt lượng của Lavoadie và Laplace dùng trong thí nghiệm chứng minh tính đúng đắn của định luật I nhiệt động học khi áp dụng vào hệ sinh vật, gọi là phương pháp nhiệt lượng kế gián tiếp Cơ sở của phương pháp này là dựa vào lượng khí ôxy tiêu thụ hoặc lượng khí CO2 do cơ thể thải ra ở động vật máu nóng (động vật có vú
và người), có liên quan chặt chẽ với nhiệt lượng chứa trong thức ăn
Ví dụ: Quá trình ôxy hóa glucose, phản ứng diễn ra như sau:
C6H12O6 + 6O2 = 6CO2 + 6H2O + 678 KCal
(180gam) (134,4l) (134,4l)
Từ phản ứng trên cho thấy cứ ôxy hoá hoàn toàn 1 phân tử gam glucose thì cần phải tiêu thụ 6 phân tử gam ôxy đồng thời thải ra 6 phân tử gam khí CO2 và giải phóng ra
678 KCal Ở điều kiện tiêu chuẩn, mỗi phân tử gam chất khí đều chứa 22,4 lít Do vậy 6 phân tử gam ôxy hoặc CO2 đều chứa: 6 x 22,4 lít = 134,4 lít
Từ đó suy ra, cơ thể cứ tiêu thụ 1 lít O2 để ôxy hoá hoàn toàn một phân tử gam glucose đồng thời thải ra 1 lít CO2 thì kèm theo giải phóng một nhiệt lượng là: 678 KCal: 134,4 lít = 5,047 KCal/lít và gọi là đương lượng nhiệt của ôxy Dựa vào phương pháp nhiệt lượng kế gián tiếp, có thể xác định được sự thải nhiệt của bất kì động vật máu nóng nào thông qua số lít ôxy tiêu thụ (hoặc số lít CO2 thải ra) Từ phản ứng ôxy hóa glucose ở trên và sau này áp dụng chung cho Gluxit khi ôxy hoá hoàn toàn sẽ giải phóng ra nhiệt lượng được tính theo công thức:
Q(KCal) = số lít O2 ( hoặc số lít CO2) x 5,047 (1.4)
Khi ôxy hóa Protein, nhiệt lượng giải phóng ra được tính theo công thức:
Q(KCal) = số lít O2 x 4,46 (1.5)
Khi ôxy hoá Lipit, nhiệt lượng giải phóng ra được tính theo công thức:
Q(KCal) = số lít O2 x 4,74 (1.6)
Mối quan hệ giữa thức ăn, số lít O2 tiêu thụ và số lít CO2 thải ra cùng đương lượng nhiệt của ôxy được thể hiện qua bảng 1.1
Bảng 1.1: Đương lượng nhiệt của ôxy đối với các loại thức ăn
Thức ăn
Số lít O2 cần để ôxy hoá 1 gam thức ăn
số lít CO2 thải ra sau khi ôxy hoá 1g thức ăn
Đương lượng nhiệt của ôxy