Table 20 Critical values of U for the Wilcoxon inversion testn1= number of elements in the largest sample; n2= number of elements in the smallest sample... Table 21 Critical values of th
Trang 1Table 20 Critical values of U for the Wilcoxon inversion test
n1= number of elements in the largest sample;
n2= number of elements in the smallest sample
Level of significance α Level of significance α
Two-sided 0.10 0.05 0.02 0.01 Two-sided 0.10 0.05 0.02 0.01One-sided 0.05 0.025 0.01 0.005 One-sided 0.05 0.025 0.01 0.005
Trang 2Table 21 Critical values of the smallest rank sum for the Wilcoxon–Mann–Whitney test
n1= number of elements in the largest sample;
n2= number of elements in the smallest sample
Level of significance α Level of significance α
Two-sided 0.20 0.10 0.05 0.01 Two-sided 0.20 0.10 0.05 0.01One-sided 0.10 0.05 0.025 0.005 One-sided 0.10 0.05 0.025 0.005
Trang 3Table 21 continued
Level of significance α Level of significance α
Two-sided 0.20 0.10 0.05 0.01 Two-sided 0.20 0.10 0.05 0.01One-sided 0.10 0.05 0.025 0.005 One-sided 0.10 0.05 0.025 0.005
Trang 4Table 22 The Kruskal–Wallis test
Critical region: H≥ tabulated value.
Sample α= 0.05 α= 0.01 Sample α= 0.05 α= 0.01 Sample α= 0.05 α= 0.01
Trang 5Table 23 Critical values for the rank sum difference test (two-sided)
Trang 7Table 24 Critical values for the rank sum maximum test
Trang 8Table 25 Critical values for the Steel test
7 0.05 37 36 35 35 34 34 33 330.01 32 31 30 30 29 29 29 29
8 0.05 49 48 47 46 46 45 45 440.01 43 42 41 40 40 40 39 39
9 0.05 63 62 61 60 59 59 58 580.01 56 55 54 53 52 52 51 51
10 0.05 79 77 76 75 74 74 73 720.01 71 69 68 67 66 66 65 65
11 0.05 97 95 93 92 91 90 90 890.01 87 85 84 83 82 81 81 80
12 0.05 116 114 112 111 110 109 108 1080.01 105 103 102 100 99 99 98 98
13 0.05 138 135 133 132 130 129 129 1280.01 125 123 121 120 119 118 117 117
14 0.05 161 158 155 154 153 152 151 1500.01 147 144 142 141 140 139 138 137
15 0.05 186 182 180 178 177 176 175 1740.01 170 167 165 164 162 161 160 160
16 0.05 213 209 206 204 203 201 200 1990.01 196 192 190 188 187 186 185 184
17 0.05 241 237 234 232 231 229 228 2270.01 223 219 217 215 213 212 211 210
18 0.05 272 267 264 262 260 259 257 2560.01 252 248 245 243 241 240 239 238
19 0.05 304 299 296 294 292 290 288 2870.01 282 278 275 273 271 270 268 267
20 0.05 339 333 330 327 325 323 322 3200.01 315 310 307 305 303 301 300 299
Trang 10Table 26 Critical values of r s for the Spearman
rank correlation test
Trang 11Table 27 Critical values of S for the Kendall rank
Trang 12Table 28 Critical values of D for the adjacency test
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.
Table 29 Critical values of r for the serial correlation test
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.
Trang 13Table 30 Critical values for the run test on successive
differences
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.
Trang 14Table 31 Critical values for the run test (equal sample sizes)
Columns a denote the lower boundaries or the left-sided critical values.
Columns b denote the upper boundaries or the right-sided critical values.
Level of significance α
Two-sided 0.10 0.05 0.02 0.01One-sided 0.05 0.025 0.01 0.005
Trang 15Table 32 Critical values for the Wilcoxon–Wilcox
Trang 17Table 33 Durbin–Watson test bounds
d Ldenotes the lower boundary or left-sided critical values
d U denotes the upper boundary or right-sided critical values
Example: for n = 20, α = 0.01, and two independent variables,
Trang 19Table 34 Modified Rayleigh test (V -test)
Trang 20Table 35 Watson’s U n2 -test
Trang 21Table 36 Watson’s two-sample U2 -test
n and m are sample sizes.
Trang 22Table 37 Maximum likelihood estimate ˆk for
given ¯R in the von Mises case
For the solution k = A−1(ρ), replace ˆk by k, ¯ R by ρ.
0.00 0.00000 0.35 0.74783 0.70 2.013630.01 0.02000 0.36 0.77241 0.71 2.076850.02 0.04001 0.37 0.79730 0.72 2.143590.03 0.06003 0.38 0.82253 0.73 2.214250.04 0.08006 0.39 0.84812 0.74 2.289300.05 0.10013 0.40 0.87408 0.75 2.369300.06 0.12022 0.41 0.90043 0.76 2.454900.07 0.14034 0.42 0.92720 0.77 2.546860.08 0.16051 0.43 0.95440 0.78 2.646130.09 0.18073 0.44 0.98207 0.79 2.753820.10 0.20101 0.45 1.01022 0.80 2.871290.11 0.22134 0.46 1.03889 0.81 3.000200.12 0.24175 0.47 1.06810 0.82 3.142620.13 0.26223 0.48 1.09788 0.83 3.301140.14 0.28279 0.49 1.12828 0.84 3.479010.15 0.30344 0.50 1.15932 0.85 3.680410.16 0.32419 0.51 1.19105 0.86 3.910720.17 0.34503 0.52 1.22350 0.87 4.177030.18 0.36599 0.53 1.25672 0.88 4.488760.19 0.38707 0.54 1.29077 0.89 4.858710.20 0.40828 0.55 1.32570 0.90 5.30470.21 0.42962 0.56 1.36156 0.91 5.85220.22 0.45110 0.57 1.39842 0.92 6.53940.23 0.47273 0.58 1.43635 0.93 7.42570.24 0.49453 0.59 1.47543 0.94 8.61040.25 0.51649 0.60 1.51574 0.95 10.27160.26 0.53863 0.61 1.55738 0.96 12.76610.27 0.56097 0.62 1.60044 0.97 16.92660.28 0.58350 0.63 1.64506 0.98 25.25220.29 0.60625 0.64 1.69134 0.99 50.24210.30 0.62922 0.65 1.73945 1.00 ∞0.31 0.65242 0.66 1.78953
0.32 0.67587 0.67 1.841770.33 0.69958 0.68 1.896370.34 0.72356 0.69 1.95357
Source: Mardia, 1972
Trang 23Table 38 Mardia–Watson–Wheeler test
n1= smaller of the two sample sizes n1, n2; n = n1+ n2
Trang 24Anderson, R.L (1942) ‘Distribution of the serial correlation coefficient’, Annals of Mathematical Statistics, 13:
1–13.
Batschelet, E (1972) ‘Recent statistical methods for orientation data’, in S.R Galler et al (eds), Symposium on Animal Orientation and Navigation Washington, DC: US Government Printing Office.
Batschelet, E (1981) Circular Statistics in Biology London: Academic Press.
Bennett, C and Franklin, N.L (1961) Statistical Analysis in Chemistry and the Chemical Industry New York:
Wiley.
De Jonge, H (1963–4) Inleiding tot de Medrische Statistick Vol 1: Fundamentele Begrippen en Technieken: Verdelingsvrije Methoden Vol II: Klassieke Methoden 3rd edn Leiden: TNO Health Research.
Dixon, W.J and Massey, F.J Jr (1957) Introduction to Statistical Analysis New York: McGraw-Hill.
Durbin, J and Watson, G.S (1951) ‘Testing for serial correlation in least squares regression II’, Biometrika, 38:
159–78.
Fisher, R.A (1958) Statistical Methods for Research Workers Edinburgh: Oliver and Boyd.
Fisher, R.A and Yates, F (1974) Statistical Tables for Biological, Agricultural and Medical Research 6th edn.
Edinburgh: Oliver and Boyd.
Geary, R.E and Pearson, E.S (n.d.) ‘Tests of normality’, Biometrika Office, University College, London Hart, B.I (1942) ‘Significance levels for the ratio of the mean square successive difference to the variance’, Annals
of Mathematical Statistics, 13: 445–7.
Mardia, K.V (1972) Statistics of Directional Data London: Academic Press.
Massey, F.J Jr (1951) ‘The Kolmogorov–Smirnov test for goodness of fit’, Journal of the American Statistical Association, 4(6): 1990.
Merrington, M and Thompson, C.M (1946) ‘Tables for testing the homogeneity of a set of estimated variances’,
Biometrika, 33: 296–304.
Natrella, M.G (1963) Experimental Statistics National Bureau of Standards Handbook 91 Washington, DC: US
Government Printing Office.
Neave, H.R (1976a) ‘The teaching of hypothesis testing’, Bulletin in Applied Statistics, 3(1): 55–63.
Neave, H.R (1976b) ‘Non-parametric testing – why and how’, Bulletin in Applied Statistics, 3(2): 49–58 Neave, H.R (1978) Statistical Tables London: George Allen & Unwin.
Pearson, E.S and Hartley, H.O (1970) Biometrika Tables for Statisticians, Vol 1 Cambridge: Cambridge
University Press.
Pearson, E.S and Hartley, H.O (1976) Biometrika Tables for Statisticians, Vol 2 London: Charles Griffin Sachs, L (1970) Statistische Methoden: ein Soforthelfer Berlin: Springer-Verlag.
Sachs, L (1972) Statistische Auswertungsmethoden 3rd edn Berlin: Springer-Verlag.
Stephens, M.A (1964) ‘The distribution of the goodness of fit statistic U2II’, Biometrika, 51: 393–7.
Walpole, R.E and Myers, R.H (1989) Probability and Statistics for Engineers and Scientists 4th edn New York:
Macmillan.
Wijvekate, M.L (1962) Verklarende Statistiek Utrecht: Aula.
Zar, J.H (1974) Biostatistical Analysis Englewood Cliffs, NJ: Prentice Hall.
Trang 25Hartley’s test 73
Hotelling’s T2test 48 hypothesis testing 2
independence test 91 interaction effect 142, 161 inversion test 97
level of significance 3 likelihood ratio test 18, 164 Link–Wallace test 67 log odds ratio 156
Mardia–Watson–Wheeler test 180
mean 55, 61, 95, 96 mean angles 18, 178 median test 93, 94, 98, 99, 171 modified Rayleigh test 174 multinomial distribution 137 multiple comparison 65, 67, 106 multiple regression 18, 158
Neave 2
non-additivity 17, 139 normal distribution 16,
25, 44 normality 74 null hypothesis 1, 4, 17
outliers 54, 75
paired observations 9, 35, 46, 96,
109, 110 Poisson distribution 28, 60 probabilistic model 18, 172
q-test 65 Q-test 88
random effects model 18, 160 randomness 118, 120, 121,
122, 123, 124, 126, 128,
129, 174 rank correlation test 109, 110,
129, 133 rank sum difference test 106 rank sum maximum test 107 rectangular population
18, 164 regression 37, 151, 153 run test 123, 124, 126
sequential contingencies 156 sequential probability ratio test 168
sequential test 18, 112, 114,
116, 166 serial correlation test 120 Siegel–Tukey rank sum dispersion test 102
sign test 93, 94 signed rank test 95, 96 significance level 2 skewness 51, 53 Spearman rank correlation test 109
standard deviation 114 Steel test 108 Studentized range 65, 74
Student’s t distribution 29, 31, 33,
Trang 26Yates correction 85
Z-test 5, 6, 21, 23, 25, 26, 27, 28,
40, 42, 57, 155, 156
Z-transformation 194