1. Trang chủ
  2. » Ngoại Ngữ

HANDBOOK OFINTEGRAL EQUATIONS phần 10 pptx

86 280 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Handbook of Integral Equations Part 10 PPTX
Trường học CRC Press LLC
Chuyên ngành Mathematics
Thể loại Lecture Notes
Năm xuất bản 1998
Định dạng
Số trang 86
Dung lượng 8,31 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Integrals Containing Trigonometric Functions Integrals containing cos x... Integrals Containing Power-Law Functions... Integrals Containing Hyperbolic Functions... Expressions With Powe

Trang 1

1sinh2n–2k–1 x

, n = 1, 2,

Trang 2

 Integrals containing tanh x or coth x.

2.5 Integrals Containing Logarithmic Functions

p+1

(p + 1)2 lnx + 2x

p+1

(p + 1)3 if p≠ –1,1

Trang 3



(lnx) q dx = x(ln x) qq

(lnx) q–1 dx, q≠ –1

b2

ln(a + bx) –1

b3

ln(a + bx) –1

a2x

b2

.14

.19

2.6 Integrals Containing Trigonometric Functions

 Integrals containing cos x Notation: n = 1, 2,

Trang 4

(2n – 2k)x sin x – cos x(2n – 2k + 1)(2n – 2k) cos2n–2k+1 x



cosax cos bx dx = sin

(b – a)x2(b – a) +

sin(b + a)x2(b + a) , a ≠ ±b.

Trang 6

dx

b2cos2ax – c2sin2ax =

12abcln



dx

cos2n+1 x sin2m+1 x =C

m n+mln|tan x| +

 Reduction formulas The parameters p and q below can assume any values, except for those at

which the denominators on the right-hand side vanish

Trang 7

 Integrals containing tan x and cot x.

a

2– 2x + 2

Trang 8

2– 2x – 2

• References for Supplement 2: H B Dwight (1961), I S Gradshteyn and I M Ryzhik (1980), A P Prudnikov,

Yu A Brychkov, and O I Marichev (1986, 1988).

Trang 9

Supplement 3

Tables of Definite Integrals

Throughout Supplement 3 it is assumed that n is a positive integer, unless otherwise specified.

3.1 Integrals Containing Power-Law Functions

Trang 10

– 1

a λsin(πλ), 0 <λ < n + 1.

Trang 11

Γ

1 –λcos2λ ksin[(2λ – 1)k]

(2λ – 1) sin k , k = arctan

√ a;

, p > 0, 0 <µ < pν.

Trang 12

|a| exp

 b24a2



ab, a, b > 0.

3.3 Integrals Containing Hyperbolic Functions

Trang 13

πa2c

cos

πb2c

, b > |a|.

, b > |a|, n = 1, 2,

(–1)k

k

, n = 0, 1,

Trang 14

–√ ab

Trang 16





b24a

+ sin



b24a

, a, b > 0.

2b

, a, b > 0.

• References for Supplement 3: H B Dwight (1961), I S Gradshteyn and I M Ryzhik (1980), A P Prudnikov,

Yu A Brychkov, and O I Marichev (1986, 1988).

Trang 17

– p2

 0(t/p)a/2 J a

Trang 18

No Original function, f (x) Laplace transform, ˜f (p) =

 0

Trang 19

4.2 Expressions With Power-Law Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

4.3 Expressions With Exponential Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

Trang 20

No Original function, f (x) Laplace transform, ˜f (p) =

 0

4.4 Expressions With Hyperbolic Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

Trang 21

No Original function, f (x) Laplace transform, ˜f (p) =

 0

4.5 Expressions With Logarithmic Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

, C = 0.5772

9 eax

p + a , C = 0.5772

Trang 22

4.6 Expressions With Trigonometric Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

Trang 23

No Original function, f (x) Laplace transform, ˜f (p) =

 0

4.7 Expressions With Special Functions

No Original function, f (x) Laplace transform, ˜f (p) =

 0

ap

2pln(p

2+ 1)

Trang 24

No Original function, f (x) Laplace transform, ˜f (p) =

 0

π

Arsinh(p/a)

Trang 25

16 f˜1(p) ˜f2(p)

 x

0

f1(t)f2(x – t) dt

Trang 26

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

 0exp

–t24x

 x0

x t–1 Γ(t) f (t) dt

p f (ln p)˜

 0

Trang 27

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i ∞ e

f (t)

t dt

5.2 Expressions With Rational Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

Trang 28

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

20 (p + a)(p + b)(p + c)p a(b – c)e

ax+b(c – a)ebx+c(a – b)ecx

(a – b)(b – c)(c – a)

2(p + a)(p + b)(p + c)

a2(c – b)e–ax+b2(a – c)e–bx+c2(b – a)e–cx

(a – b)(b – c)(c – a)

(p + a)(p + b)2

1(a – b)2

ax+ 13ae

ax/2cos(kx) +

3 sin(kx)

,

k = 12a √

3

Trang 29

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

sinh(ax) – sin(ax)

2a2

cosh(ax) – cos(ax)

2

p4–a4

12a

sinh(ax) + sin(ax)

3

p4–a4

12

cosh(ax) + cos(ax)

, ξ = √ ax

2

Trang 30

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

sin(ax) – ax cos(ax)

sin(ax) + ax cos(ax)

Trang 31

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i∞ e

m k– lexp

a k x,

5.3 Expressions With Square Roots

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

Trang 32

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i∞ e

px f (p) dp˜



x π

a



e axerfc√

ax– 2πa

√ x

2ax

J0(b – 1

Trang 33

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i ∞

5.4 Expressions With Arbitrary Powers

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

(2a)νΓ

ν + 12 x ν I ν–1(ax)8

Trang 34

5.5 Expressions With Exponential Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1



19 p exp

ap, a > 0

√ a

8

π(a – 6x)x

–7/2exp

– a4x



Trang 35

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

ap

π exp

– a4x

–

a erfc

 √ a

2√ x

p2+a2 , k > 0



0 if 0 <x < k, J0

5.6 Expressions With Hyperbolic Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i∞ e

cosh

2

ax– cos

sinh

2

ax– sin

cosh

2

ax+ cos

sinh

2

ax+ sin

Trang 36

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

5.7 Expressions With Logarithmic Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

13 ln(p + a)

2+k2(p + b)2+k2

a

xsinh(ax)

Trang 37

5.8 Expressions With Trigonometric Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i ∞ e

2ax

5 1pexp

apsin√

πxsin

 a2x



6 1pexp

apcos√

πxcos

 a2x

5.9 Expressions With Special Functions

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1

2πi

 c+i ∞ c–i∞ e

Trang 38

No Laplace transform, ˜f (p) Inverse transform, f (x) = 1



• References for Supplement 5: G Doetsch (1950, 1956, 1958), H Bateman and A Erd´elyi (1954), I I Hirschman and

D V Widder (1955), V A Ditkin and A P Prudnikov (1965).

Trang 39

f (x) sin(xu) dx

5 f (ax) cos(bx), a, b > 0 1

2a

fc

u + b

a

+ ˇfc

u – b

a



6.2 Expressions With Power-Law Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

in the sense of Cauchy principal value)

2

sin

Trang 40

No Original function, f (x) Cosine transform, ˇfc(u) =

6.3 Expressions With Exponential Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

Trang 41

No Original function, f (x) Cosine transform, ˇfc(u) =

2aucos√

2au– sin√

6.4 Expressions With Hyperbolic Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

2πab–1

cosh1

2πb–1ucos

πab–1+ cosh

cos

abu2

πab–1+ cosh

πb–1u

coth1

4πa–1u

6.5 Expressions With Logarithmic Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

Trang 42

No Original function, f (x) Cosine transform, ˇfc(u) =

2

,

C = 0.5772 is the Euler constant

– lnu



πa–1u

6.6 Expressions With Trigonometric Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

Trang 43

No Original function, f (x) Cosine transform, ˇfc(u) =

b √

x, a, b > 0



π

u sin

ab2u

sin

a2+b24u –

u24a

– sin

u24a

√ π

(A2+B2)1/4 exp

– Au2

A2+B2

sin

b √

u cos

ab2u

sin

a2+b24u +

2+u24b

cosh

au2b

√ π

(A2+B2)1/4 exp

– Au2

A2+B2

cos

A = 4a, B = 4b, ϕ = 1

2 arctan(b/a)

6.7 Expressions With Special Functions

No Original function, f (x) Cosine transform, ˇfc(u) =

Trang 44

No Original function, f (x) Cosine transform, ˇfc(u) =



0 f (x) cos(ux) dx

4 J0(ax), a > 0

1

(u2–a2ν+3/2 if a < u

2

ν

uν–1sin

a24u–

Γ1

2 –ν(u2–a2ν+1/2 if a < u

Trang 45

f (x) cos(xu) dx

5 f (ax) cos(bx), a, b > 0 1

2a

fs

u + b

a

+F s

u – b

a



7.2 Expressions With Power-Law Functions

No Original function, f (x) Sine transform, ˇfs(u) =

Trang 46

No Original function, f (x) Sine transform, ˇfs(u) =

15 xν, 0 <ν < 2 cos1

2πν

Γ(1 – ν)u ν–1

7.3 Expressions With Exponential Functions

No Original function, f (x) Sine transform, ˇfs(u) =

2 ln

u2+b2

u2+a2

+b arctan

u

b

–a arctan

u

a



Trang 47

No Original function, f (x) Sine transform, ˇfs(u) =

2aucos√

2au+ sin√

7.4 Expressions With Hyperbolic Functions

No Original function, f (x) Sine transform, ˇfs(u) =

πab–1+ cosh

πab–1+ cosh

πb–1u

Trang 48

7.5 Expressions With Logarithmic Functions

No Original function, f (x) Sine transform, ˇfs(u) =

C = 0.5772 is the Euler constant

– lnu2Γ(1 – ν) cosπν

a



7.6 Expressions With Trigonometric Functions

No Original function, f (x) Sine transform, ˇfs(u) =

0 if u > π

2

1

Trang 49

No Original function, f (x) Sine transform, ˇfs(u) =

2+b24a

sinh

bu2a



π

8u

sin

2

au– cos

2

au+ exp–2

au

14 exp

–a

xsin

a √

x, a > 0 a



π

8 u–3/2exp

–a2

b √

x, a, b > 0



π

ucos

ab2u

cos

a2+b24u +

π

4



7.7 Expressions With Special Functions

No Original function, f (x) Sine transform, ˇfs(u) =

Trang 50

No Original function, f (x) Sine transform, ˇfs(u) =



0 f (x) sin(ux) dx

4 J0(ax), a > 0

0 if 0 <u < a,1

a > 0, –2 <ν < 12

a ν

2ν u ν+1cos

a24u –

πν

2



Trang 51

No Original function, f (x) Sine transform, ˇfs(u) =

• References for Supplement 7: G Doetsch (1950, 1956, 1958), H Bateman and A Erd´elyi (1954), I I Hirschman and

D V Widder (1955), V A Ditkin and A P Prudnikov (1965).

Trang 53

8.2 Expressions With Power-Law Functions

No Original function, f (x) Mellin transform, ˆf (s) =

(x2+a2)(x2+b2), a, b > 0

π

a s–2b s–22(b2–a2) sin1

 , 0 < Re s < (n – 1)ν

8.3 Expressions With Exponential Functions

No Original function, f (x) Mellin transform, ˆf (s) =

Trang 54

No Original function, f (x) Mellin transform, ˆf (s) =

8.4 Expressions With Logarithmic Functions

No Original function, f (x) Mellin transform, ˆf (s) =

11 exlnn x, n = 1, 2, d

n

ds n Γ(s), Res > 0

8.5 Expressions With Trigonometric Functions

No Original function, f (x) Mellin transform, ˆf (s) =



0 f (x)x s–1 dx

1 sin(ax), a > 0 as Γ(s) sin1

2πs, –1 < Res < 1

2 sin2(ax), a > 0 –2–s–1 as Γ(s) cos1

2πs, –2 < Res < 0

3 sin(ax) sin(bx), a, b > 0, a ≠ b 12Γ(s) cos1

2πs

|b – a|s– (b + a)–s

,–2 < Res < 1

Trang 55

No Original function, f (x) Mellin transform, ˆf (s) =



0 f (x)x s–1 dx

4 cos(ax), a > 0 as Γ(s) cos1

2πs, 0 < Res < 1

5 sin(ax) cos(bx), a, b > 0

Γ(s)

2 sin

πs2



(a + b)–s+|a – b|ssign(a – b)

,–1 < Res < 1

6 eaxsin(bx), a > 0 Γ(s) sin



s arctan(b/a)(a2+b2)s/2 , –1 < Res

7 eaxcos(bx), a > 0 Γ(s) cos



s arctan(b/a)(a2+b2)s/2 , 0 < Res

8.6 Expressions With Special Functions

No Original function, f (x) Mellin transform, ˆf (s) =

π(s – ν)2

,

Trang 56

Supplement 9

Tables of Inverse Mellin Transforms

See Section 8.1 of Supplement 8 for general formulas.

9.1 Expressions With Power-Law Functions

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

b x

asin



b ln1x

Trang 57

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

erfc

– erf

Trang 58

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

9.3 Expressions With Trigonometric Functions

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i ∞ σ–i∞ f (s)xˆ

Trang 59

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i ∞ σ–i ∞

9.4 Expressions With Special Functions

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i ∞ σ–i∞ f (s)xˆ

Trang 60

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i ∞ σ–i ∞

Trang 61

No Direct transform, ˆf (s) Inverse transform, f (x) = 1

2πi

 σ+i ∞ σ–i ∞

Trang 62

Supplement 10

Special Functions and Their Properties

Throughout Supplement 10 it is assumed that n is a positive integer, unless otherwise specified.

10.1 Some Symbols and Coefficients

n!! =

(2k)!! ifn = 2k,

Trang 63

 Pochhammer symbol (k = 1, 2, )

(a)n=a(a + 1) (a + n – 1) = Γ(a + n)

Γ(a) = (–1)

n Γ(1 – a) Γ(1 – a – n),

(a)0= 1, (a)n+k= (a)n(a + n)k, (n)k= (n + k – 1)!

(n – 1)! ,(a)–n= Γ(a – n)

10.2 Error Functions and Integral Exponent

 Error function and complementary error function (probability integrals)

Definitions:

erfx = √2

π

 x0

exp(–t2)dt, erfcx = 1 – erf x = √2

2k x2k+1

2k + 1)!!.Asymptotic expansion of erfcx as x → ∞:

erfcx = √1

πexp

–x2M –1

m=0

(–1)m

12

Trang 64

Other integral representations:

Ei(–x) = –e–x

 0

x sin t + t cos t

x2+t2 dt for x > 0,

Ei(–x) = e–x

 0

x sin t – t cos t

x2+t2 dt for x < 0,

Ei(–x) = –x

 1

Trang 65

Expansion into series in powers ofx as x → 0:

sint

t dt =

2

π

 √ x

0sint2,dt,

π

 √ x

0cost2dt.

Expansion into series in powers ofx as x → 0:

S(x) =

2

Trang 66

10.4 Gamma Function Beta Function

 Definition Integral representations

The gamma function, Γ(z), is an analytic function of the complex argument z everywhere,

except for the pointsz = 0, –1, –2,

For Rez > 0,

Γ(z) =

 0

t z–1 edt.

For –(n + 1) < Re z < –n, where n = 0, 1, 2, ,

Γ(z) =

 0

1

2 +z



z + 2

3

,



 Fractional values of the argument

Γ

12



=√ π,

Γ

–12



= –2√ π,

2n (2n – 1)!!,Γ

Trang 67

 Logarithmic derivative of the gamma function

z,

ψ1

2 +z–ψ1

.Integral representations (Rez > 0):

ψ(z) =

 0



e– – (1 +t)z

t–1dt, ψ(z) = ln z +

 0

1 –t z–1

1 –t dt,

whereC = –ψ(1) = 0.5572 is the Euler constant.

Values for integer argument:

10.5 Incomplete Gamma Function

 Definitions Integral representations

γ(α, x) =

 x

0

et α–1 dt, Reα > 0, Γ(α, x) =



x

et α–1 dt = Γ(α) – γ(α, x).

Trang 68

1

2,x

2, Ei(–x) = –Γ(0, x)

 Incomplete beta function:

B x(p, q) =

 1 0

t p–1(1 –t) q–1 dt,

where Rex > 0 and Re y > 0.

10.6 Bessel Functions

 Definition and basic formulas

The Bessel function of the first kind,J ν(x), and the Bessel function of the second kind, Yν(x)

(also called the Neumann function), are solutions of the Bessel equation

x2y xx+xy  x+ (x2–ν2)y = 0and are defined by the formulas

The general solution of the Bessel equation has the formZ ν(x) = C1J ν(x) + C2Y ν(x) and is

called the cylinder function

Trang 69

The Bessel functions possess the properties

x

d dx

πxsinx,

J3/2(x) =

2

πx

1

xsinx – cos x

,

J–1/2(x) =

2

πxcosx,

J–3/2(x) =

2

πx

–1

xcosx – sin x

,

J n+1/2(x) =

2

πx

sin

Jn–1/2(x) =

2

πx

cos

Y1/2(x) = –

2

πxcosx,

Y n+1/2(x) = (–1)n+1 Jn–1/2(x),

Y–1/2(x) =

2

πxsinx,

Yn–1/2(x) = (–1)n J n+1/2(x)

 The Bessel functions for ν = ±n; n = 0, 1, 2,

Letν = n be an arbitrary integer The relations

J– n(x) = (–1)n J n(x), Y– n(x) = (–1)n Y n(x)are valid The functionJ n(x) is given by the first formula in (1) with ν = n, and Yn(x) can be

obtained from the second formula in (1) by proceeding to the limitν → n For nonnegative n, Y n(x)

can be represented in the form

Trang 70

 Wronskians and similar formulas

 0exp(–x sinh t – νt) dt,

πY ν(x) =

 π

0sin(x sin θ – νθ) dθ –

 0(eνt+eνt

cosπν)ex sinh t dt.

sin(xt) dt( 2– 1)ν+1/2,

cos(xt) dt(2– 1)ν+1/2.Forν > –1

Forν = 0, x > 0,

J0(x) = 2

π

 0

sin(x cosh t) dt, Y0(x) = –2

π

 0cos(x cosh t) dt

For integerν = n = 0, 1, 2, ,

J n(x) = 1

π

 π0cos(nt – x sin t) dt (Bessel’s formula),

J2n(x) = 2

π

 π/2

0cos(x sin t) cos(2nt) dt,

J2 n+1(x) = 2

π

 π/2

0sin(x sin t) sin[(2n + 1)t] dt

 Integrals with Bessel functions

, Re(λ+ν) > –1,

whereF (a, b, c; x) is the hypergeometric series (see Section 10.9 of this supplement),

Trang 71

For nonnegative integern and large x,

πx J2n(x) = (–1)n(cosx + sin x) + O(x–2),

πx J2 n+1(x) = (–1)n+1(cosx – sin x) + O(x–2)

 Asymptotic for large ν (ν → ∞).

J ν(x)→ √1

2πν

ex2

ν

, Y ν(x)→ –

2

πν

ex2

–ν

,wherex is fixed,

 Zeros of Bessel functions

Each of the functionsJ ν(x) and Yν(x) has infinitely many real zeros (for real ν) All zeros are

simple, possibly except for the pointx = 0.

The zerosγ mofJ0(x), i.e., the roots of the equation J 0(γm) = 0, are approximately given by

γ m= 2.4 + 3.13 (m – 1) (m = 1, 2, ),with maximum error 0.2%

 Hankel functions (Bessel functions of the third kind)

H ν(1)(z) = Jν(z) + iYν(z), H ν(2)(z) = Jν(z) – iYν(z), i2= –1

10.7 Modified Bessel Functions

 Definitions Basic formulas

The modified Bessel functions of the first kind,I ν(x), and the second kind, Kν(x) (also called

the Macdonald function), of orderν are solutions of the modified Bessel equation

x2y xx+xy  x– (x2+ν2)y = 0

Ngày đăng: 23/07/2014, 16:20

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
Corduneanu, C., Integral Equations and Applications, Cambridge Univ. Press, Cambridge–New York, 1991 Sách, tạp chí
Tiêu đề: Integral Equations and Applications
Năm: 1991
Courant, R. and Hilbert, D., Methods of Mathematical Physics. Vol. 1., Interscience Publ., New York, 1953 Sách, tạp chí
Tiêu đề: Methods of Mathematical Physics. Vol. 1
Năm: 1953
Davenport, W. B. and Root, W. L., An Introduction to the Theory of Random Signals and Noise, McGraw-Hill Book Co., New York, 1958 Sách, tạp chí
Tiêu đề: An Introduction to the Theory of Random Signals and Noise
Năm: 1958
Davis, B., Integral Transforms and Their Applications, Springer-Verlag, New York, 1978 Sách, tạp chí
Tiêu đề: Integral Transforms and Their Applications
Năm: 1978
Delves, L. M. and Mohamed J. L., Computational Methods for Integral Equations, Cambridge Univ. Press, Cambridge–New York, 1985 Sách, tạp chí
Tiêu đề: Computational Methods for Integral Equations
Năm: 1985
Demidovich, B. P., Maron, I. A., and Shuvalova E. Z., Numerical Methods. Approximation of Functions and Differential and Integral Equations [in Russian], Fizmatgiz, Moscow, 1963 Sách, tạp chí
Tiêu đề: Numerical Methods. Approximation ofFunctions and Differential and Integral Equations
Năm: 1963
Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon Press, New York, 1965 Sách, tạp chí
Tiêu đề: Integral Transforms and Operational Calculus
Năm: 1965
Doetsch, G., Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation, Birk- h¨ auser Verlag, Basel–Stuttgart, 1950 Sách, tạp chí
Tiêu đề: Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation
Năm: 1950
Doetsch, G., Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation, Birkh¨ auser Verlag, Basel–Stuttgart, 1956 Sách, tạp chí
Tiêu đề: Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation
Năm: 1956
Doetsch, G., Einf¨ uhrung in Theorie und Anwendung der Laplace-Transformation, Birkh¨ auser Verlag, Basel–Stuttgart, 1958 Sách, tạp chí
Tiêu đề: Einf¨uhrung in Theorie und Anwendung der Laplace-Transformation
Năm: 1958
Dwight, H. B., Tables of Integrals and Other Mathematical Data, Macmillan, New York, 1961 Sách, tạp chí
Tiêu đề: Tables of Integrals and Other Mathematical Data
Năm: 1961
Dzhuraev, A., Methods of Singular Integral Equations, J. Wiley, New York, 1992 Sách, tạp chí
Tiêu đề: Methods of Singular Integral Equations
Năm: 1992
Fock, V. A., Some integral equations of mathematical physics, Doklady AN SSSR, Vol. 26, No. 4–5, pp. 147–151, 1942 Sách, tạp chí
Tiêu đề: Some integral equations of mathematical physics
Năm: 1942
Gakhov, F. D., Boundary Value Problems [in Russian], Nauka, Moscow, 1977 Sách, tạp chí
Tiêu đề: Boundary Value Problems
Năm: 1977
Gakhov, F. D. and Cherskii, Yu. I., Equations of Convolution Type [in Russian], Nauka, Moscow, 1978 Sách, tạp chí
Tiêu đề: Equations of Convolution Type
Năm: 1978
Gohberg, I. C. and Krein, M. G., The Theory of Volterra Operators in a Hilbert Space and Its Applications [in Russian], Nauka, Moscow, 1967 Sách, tạp chí
Tiêu đề: The Theory of Volterra Operators in a Hilbert Space and ItsApplications
Năm: 1967
Golberg, A. (Editor), Numerical Solution of Integral Equations, Plenum Press, New York, 1990 Sách, tạp chí
Tiêu đề: Numerical Solution of Integral Equations
Năm: 1990
Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products, Academic Press, New York, 1980 Sách, tạp chí
Tiêu đề: Tables of Integrals, Series, and Products
Năm: 1980
Gripenberg, G., Londen, S.-O., and Staffans, O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 Sách, tạp chí
Tiêu đề: Volterra Integral and Functional Equations
Năm: 1990
Hackbusch, W., Integral Equations: Theory and Numerical Treatment, Birkh¨ auser Verlag, Boston, 1995 Sách, tạp chí
Tiêu đề: Integral Equations: Theory and Numerical Treatment
Năm: 1995

TỪ KHÓA LIÊN QUAN