1. Trang chủ
  2. » Y Tế - Sức Khỏe

Chapter 096. Paraneoplastic Syndromes: Endocrinologic/Hematologic (Part 3) pdf

5 199 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 13,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Paraneoplastic Syndromes: Endocrinologic/Hematologic Part 3 Etiology Humoral hypercalcemia of malignancy HHM occurs in up to 20% of patients with cancer.. In addition to acting as a c

Trang 1

Chapter 096 Paraneoplastic Syndromes:

Endocrinologic/Hematologic

(Part 3)

Etiology

Humoral hypercalcemia of malignancy (HHM) occurs in up to 20% of patients with cancer HHM is most common in cancers of the lung, head and neck, skin, esophagus, breast, genitourinary tract, and in multiple myeloma and lymphomas Several distinct humoral causes of HHM occur, most commonly overproduction of PTHrP In addition to acting as a circulating humoral factor, bone metastases (e.g., breast, multiple myeloma) may produce PTHrP, leading to local osteolysis and hypercalcemia

PTHrP is structurally related to PTH and it binds to the PTH receptor, explaining the similar biochemical features of HHM and hyperparathyroidism PTHrP plays a key role in skeletal development and regulates cellular proliferation and differentiation in other tissues including skin, bone marrow, breast, and hair

Trang 2

follicles The mechanism of PTHrP induction in malignancy is incompletely understood; however, tumor-bearing tissues commonly associated with HHM normally produce PTHrP during development or cell renewal Mutations in certain

oncogenes, such as Ras, can activate PTHrP expression In adult T cell lymphoma,

the transactivating Tax protein produced by human T-cell lymphotropic virus I (HTLV-I) stimulates PTHrP promoter activity Metastatic lesions to bone are more likely to produce PTHrP than are metastases in other tissues, suggesting that bone produces factors that enhance PTHrP production, or that PTHrP-producing metastases have a selective growth advantage in bone Thus, PTHrP production can be stimulated by mutations in oncogenes, by altered expression of viral or cellular transcription factors, and by local growth factors

Another relatively common cause of HHM is excess production of 1,25-dihydroxyvitamin D Like granulomatous disorders associated with hypercalcemia, lymphomas can produce an enzyme that converts 25-hydroxyvitamin D to the more active 1,25-di25-hydroxyvitamin D, leading to enhanced gastrointestinal calcium absorption Other causes of HHM include tumor-mediated production of osteolytic cytokines and inflammatory mediators

Clinical Manifestations

Trang 3

The typical presentation of HHM is a patient with a known malignancy who is found to be hypercalcemic on routine laboratory tests Less often, hypercalcemia is the initial presenting feature of malignancy Particularly when calcium levels are markedly increased [>3.5 mmol/L (>14 mg/dL)], patients may experience fatigue, mental status changes, dehydration, or symptoms of nephrolithiasis

Diagnosis

Features that favor HHM, as opposed to primary hyperparathyroidism, include known malignancy, recent onset of hypercalcemia, and very high serum calcium levels Like hyperparathyroidism, hypercalcemia caused by PTHrP is accompanied by hypercalciuria and hypophosphatemia Measurement of PTH is useful to exclude primary hyperparathyroidism; the PTH level should be suppressed in HHM An elevated PTHrP level confirms the diagnosis, and it is increased in ~80% of hypercalcemic patients with cancer 1,25-Dihydroxyvitamin

D levels may be increased in patients with lymphoma

Humoral Hypercalcemia of Malignancy: Treatment

Trang 4

The management of HHM begins with removal of excess calcium in the diet, medications, or IV solutions Oral phosphorus (e.g., 250 mg Neutra-Phos 3–4 times daily) should be given until serum phosphorus is >1.0 mmol/L (>3 mg/dL) Saline rehydration is used to dilute serum calcium and promote calciuresis Forced diuresis with furosemide or other loop diuretics can enhance calcium excretion but provides relatively little value except in life-threatening hypercalcemia When used, loop diuretics should be administered only after complete rehydration and with careful monitoring of fluid balance Bisphosphonates such as pamidronate (30–90 mg IV), zolendronate (4–8 mg IV), or etidronate (7.5 mg/kg per day PO for 3–7 consecutive days) can reduce serum calcium within 1–2 days and suppress calcium release for several weeks Bisphosphonate infusions can be repeated or oral bisphosphonates can be used for chronic treatment Dialysis should be considered in severe hypercalcemia when saline hydration and bisphosphonate treatments are not possible or are too slow in onset Previously used agents, such

as calcitonin and mithramycin, have little utility now that bisphosphonates are available Calcitonin (2–8 U/kg SC every 6–12 h) should be considered when rapid correction of severe hypercalcemia is needed Hypercalcemia associated with lymphomas, multiple myeloma, or leukemia may respond to glucocorticoid treatment (e.g., prednisone 40–100 mg PO in four divided doses)

Ectopic Vasopressin: Tumor-Associated SIADH

(See also Chap 46)

Ngày đăng: 07/07/2014, 04:20