1. Trang chủ
  2. » Khoa Học Tự Nhiên

Basic Theoretical Physics: A Concise Overview P42 potx

10 222 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 244,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

428 55 Conclusion to Part IVFor a grand canonical ensemble, where the heat bath not only exchanges energy with the system, but also particles, such that the particle number in a volume e

Trang 1

428 55 Conclusion to Part IV

For a grand canonical ensemble, where the heat bath not only exchanges

energy with the system, but also particles, such that the particle number in

a volume element V fluctuates around the average N (T , μ, V ), in addition to

β



k B T



,

one obtains for the distribution a second parameter μ (the so-called chemical potential ) for the analogous quantity to the Helmholtz free energy, i.e., for the Gibbs grand canonical thermodynamic potential :

Φ(T , μ, V, ) = −k B T · ln Z(T, μ, V, ) , with the grand canonical partition function:

Z(T, μ, V, ) =

i,j

e− Ei(V,Nj )−μNj kB T .

The mathematical relation between the Helmholtz free energy and the Gibbs grand canonical potential Φ is a Legendre transform, i.e.:

Φ(T , μ, V, ) = F (T , V, N (T , μ, V ), ) − μ · N(T, μ, V ) ,

similarly to the way the internal energy U (T , V, N, ) and the enthalpy I

depend on each other:

I(T , p, N, ) = U (T , V (T , p, N, ), N, ) + p · V (T, p, N, ) , with the pressure p as the conjugate Lagrange parameter regulating fluctua-tions in V

These Legendre transformations are mathematically analogous to the

transition from the Lagrange function L(v, )2 to the Hamilton function

H(p, ) in classical mechanics; incidentally (this may be used for mnemonic

purposes!) the corresponding letters are similar, i.e., V (and v) and p (and p), although the meaning is completely different.

The relation between a) and b) can also be expressed as

U (T , V, N, ) ≡ H(V, N, ) T

Where

1

ˆ

A

2

T is the thermodynamic expectation with the suitable canoni-cal (and microcanonicanoni-cal and grand canonicanoni-cal ) Boltzmann-Gibbs distribution,

e.g.,

1

ˆ

A

2

T

i

p i (T ) · ψ i | ˆ A |ψ i  , with p i (T ) = e

− Ei(V,N, )

kB T Z(T , V, N, ) ,

2

Actually by the Legendre transformation of−L.

Trang 2

55 Conclusion to Part IV 429 and the Hermitian operator ˆA represents an observable (i.e., a measurable quantity) The ψ i represent the complete system of eigenfunctions of the Hamilton operatorH; the E i are the corresponding eigenvalues

Concerning the entropy: This is a particularly complex quantity, whose

complexity should not simply be “glossed over” by simplifications In fact,

the entropy is a quantitative measure for complexity, as has been stated

already In this context one should keep in mind that there are at least three commonly used methods of calculating this quantity:

a) by differentiating the Helmholtz free energy with respect to T :

S(T , V, N, ) = − ∂F (T , V, N, )

b) from the difference expression

S = 1

T · (U − F )

following from the relation

F (T , V, N, ) = U (T , V, N, ) − T · S(T, V, N, ) ,

where the quantity T · S represents the heat loss This formulation seems

to be particularly useful educationally

c) A third possibility of quantification follows directly from statistical physics

S = −k B ·

i

p i ln p i

(where this relation can even be simplified to S = −k B ˆ in the above trace formalism.)

d) Shannon’s informational entropy3 is also helpful

It should also have become clear that the Second Law (and even the Third

Law) can be formulated without recourse to entropy However, the notion

of absolute temperature (Kelvin temperature) T is indispensable; it can be

quantified via the efficiency of Carnot machines and constitutes a prerequisite for statistical physics

Amongst other important issues, the Maxwell relations remain paramount.

Here one should firstly keep in mind how these relations follow from a

differ-ential formulation of the First and Second Laws in terms of entropy; secondly

one should keep in mind the special relation

∂U

∂V = T

∂p

∂T − p

3 This is essentially the same: k B is replaced by 1, and the natural logarithm is replaced by the binary logarithm.

Trang 3

430 55 Conclusion to Part IV

and the application to the Gay-Lussac experiment, and thirdly one should

remember that one can always obtain important cross-relations by equating mixed second-order derivatives, e.g.,

2F

∂x i ∂x j

,

in the total differentials of the Helmholtz free energy,

dF = −pdV + μdN + − SdT ,

or analogous thermodynamic potentials

In this book we have also stressed similarities between the four different parts Therefore, looking back with a view on common trends, it seems that the systematic exploitation of “coherence properties” has a promising future,

not only in optics (holography), but also in quantum mechanics (quantum computing, etc.) Unfortunately, as discussed above, thermalization also leads

to decoherence However, recent success in obtaining ultralow temperatures

means that this barrier may become surmountable in the not-too-distant future

Trang 4

1 W Nolting: Grundkurs theoretische Physik, in German, 5th edn (Springer,

Berlin Heidelberg New York 2002), 7 volumes

This is a good example of a series of textbooks which in seven volumes covers sometimes less but sometimes much more than the four parts of our com-pendium

2 http://www.physik.uni-regensburg.de/forschung/krey

To Part I:

3 As a recommendable standard textbook on Classical Mechanics we recommend

H Goldstein, Ch.P Poole, J Safko: Classical Mechanics, 3rd edn

(Addison-Wesley, San Francisco Munich 2002), pp 1–638

4 H Hertz: Die Constitution der Materie, in: A F¨olsing (Ed.), Springer, Berlin Heidelberg New York, 1999, pp 1–171

5 A Einstein: Zur Elektrodynamik bewegter K¨ orper, Ann der Physik 17, 891

(1905)

6 R von E¨otv¨os, D Pek´ar, E Fekete: Ann d Physik 68, 11 (1922)

7 S.M Carroll: Spacetime and Geometry Introduction to General Relativity,

(Ad-dison Wesley, San Francisco and elsewhere 2003), pp 1–513

8 L.D Landau, E.M Lifshitz: Course of Theoretical Physics, volume 2, The

Clas-sical Theory of Fields, 4th edn (Pergamon Press, Oxford New York and

else-where, 1975), pp 1–402 (This book contains very readable chapters on relativ-ity.)

9 H.G Schuster, W Just: Deterministic Chaos, 4th edn (Wiley-VCH, Weinheim

2005), pp 1–287

To Part II:

10 B.I Bleaney, B Bleaney: Electricity and Magnetism, 3rd edn (Oxford

Univer-sity Press 1976), pp 1–761

11 J.D Jackson: Classical Electrodynamics, 3rd edn (Wiley, New York Weinheim

Singapore 1999), pp 1–938

12 A Heck: Introduction to Maple, 3rd edn (Springer, Berlin Heidelberg New York

2003), pp 1–828

13 L.D Landau, E.M Lifshitz: Course of Theoretical Physics, volume 1,

Mechan-ics, 3rd edn (Pergamon Press, Oxford New York and elsewhere, 1976), pp 1–169,

Chapt 44 (This chapter is useful for understanding the cross relations to the Fermat principle in geometrical optics.)

14 A Sommerfeld: Optics, 4th edn (Academic Press, New York 1967), pp 1–383

Trang 5

432 References

15 F Pedrotti, L Pedrotti: Introduction to optics, 2nd edn (Prentice Hall, Upper

Saddle River (NY, USA) 1993), pp 1–672

16 E Hecht: Optics, 4th edn (Addison-Wesley, San Francisco New York 2002),

pp 1–565

17 K Bammel: Physik Journal, in German, (1) 42 (2005)

To Part III:

18 A Einstein: ¨ Uber einen die Erzeugung und Verwandlung des Lichtes

betref-fenden heuristischen Gesichtspunkt, Ann der Physik 17, 132 (1905)

19 W Heisenberg: Z Physik 33, 879 (1925)

20 M Born, W Heisenberg, P Jordan: Z Pysik 35 557 (1926)

21 C.I Davisson, L.H Germer: Nature 119, 890 (1927); Phys Rev 30, 705 (1927)

22 E Schr¨odinger: Ann Physik (4) 79, 361; 489; 734 (1926); 80, 109 (1926)

23 J von Neumann: Mathematische Grundlagen der Quantenmechanik, in

Ger-man, reprinted from the 2nd edn of 1932 (Springer, Berlin Heidelberg New York 1996), pp 1–262

24 W D¨oring: Quantenmechanik, in German (Vandenhoek & Ruprecht, G¨ottingen 1962), pp 1–517

25 J Bardeen, L.N Cooper, J.R Schrieffer: Phys Rev 106, 162 (1957); 108, 1175

(1957)

26 D.D Osheroff R.C Richardson, D.M Lee, Phys Rev Lett 28, 885 (1972)

27 H B¨orsch, H Hamisch, K Grohmann, D Wohlleben: Z Physik 165, 79 (1961)

28 M Berry: Phys Today 43 34 (12) (1990)

29 A Einstein, B Podolski, N Rosen: Phys Rev 47, 777 (1935)

30 J.S Bell: Physics 1, 195 (1964)

31 P Kwiat, H Weinfurter, A Zeilinger: Spektrum der Wissenschaft 42, (1) (1997)

32 A Zeilinger: Einsteins Schleier – die neue Welt der Quantenphysik, in German

(C.H Beck, M¨unchen 2003), pp 1–237

33 D Loss, D.P DiVincenzo: Phys Rev A 57, 120 (1998)

34 F.H.L Koppens, J.A Folk, J.M Elzerman, R Hanson, L.H.W van Beveren, I.T Fink, H.P Tranitz, W Wegscheider, L.M.K Vandersypen, L.P

Kouwen-hoven: Science 309, 1346 (2005)

To Part IV:

35 A Einstein: ¨ Uber die von der molekularkinetischen Theorie der W¨ arme geforderte Bewegung von in ruhenden Fl¨ ussigkeiten suspendierten Teilchen,

Ann der Physik 17, 549 (1905)

36 P Papon, J Leblond, P.H.E Meijer: The Physics of Phase Transitions

(Springer, Berlin Heidelberg New York 2002), pp 1–397

37 C Kittel: Introduction to Solid State Physics, 8th edn (Wiley, New York London

Sidney Toronto 2005), pp 1–680

38 W Gebhardt, U Krey: Phasen¨ uberg¨ ange und kritische Ph¨ anomene, in German

(Vieweg, Braunschweig Wiesbaden 1980), pp 1–246

39 W D¨oring: Einf¨ uhrung in die theoretische Physik, Sammlung G¨ oschen, in

Ger-man, 5 volumes, 3rd edn (de Gruyter, Berlin 1965), pp 1–125, 1–138, 1–117, 1–107, 1–114

40 A Sommerfeld, H.A Bethe: Elektronentheorie der Metalle (Springer, Berlin

Heidelberg New York 1967)

Trang 6

References 433

41 H Thomas: Phase transitions and critical phenomena In: Theory of condensed

matter, directors F Bassani, G Cagliotto, J Ziman (International Atomic

Energy Agency, Vienna 1968), pp 357–393 At some libraries this book, which has no editors, is found under the name E Antoncik

42 R Sexl, H Sexl: White dwarfs – black holes, 2nd edn (Springer, Berlin

Heidel-berg New York 1999), pp 1–540

43 R Sexl, H.K Urbantke: Gravitation und Kosmologie, in German, 3rd edn

(Bib-liograpisches Institut, Mannheim 1987), pp 1–399

44 C.W Misner, K.S Thorne, J.A Wheeler: Gravitation, 25th edn (Freeman, New

York 1003), pp 1–1279

45 D Vollhardt, P W¨olfle, The superfluid phases of helium 3, (Taylor & Francis,

London New York Philadephia 1990), pp 1–690

46 V.L Ginzburg, L.D Landau: J Exp Theor Physics (U.S.S.R.) 20, 1064 (1950)

47 A Abrikosov: Sov Phys JETP 5, 1174 (1957)

48 L.D Landau, E.M Lifshitz: Course of Theoretical Physics, volumes 5 and 9 (=

Statistical Physics, Part 1 and Part 2), 3rd edn, revised and enlarged by E.M Lifshitz and L.P Pitaevskii (Pergamon Press, Oxford New York and elsewhere, 1980), pp 1–544 and 1–387

49 J de Cloizeaux: Linear response, generalized susceptibility and dispersion

the-ory In: Theory of condensed matter, directors F Bassani, G Cagliotto, J.

Ziman (International Atomic Energy Agency, Vienna 1968), pp 325–354 At some libraries this book, which has no editors, is found under the name E Antoncik

50 N Metropolis, A.W Rosenbluth, M.N Rosenbluth, A.H Teller, E Teller: J

Chem Phys 21, 1087 (1953)

51 D.P Landau, K Binder: A guide to Monte Carlo simulations in statistical

physics, 2nd edn (Cambridge University Press, Cambridge UK, 2000), pp 1–

448

Trang 7

Abb´e resolution 198

Abrikosov (vortex lattice) 398

Abrikosov, Ginzburg, Legget 395

abstract quantum mechanics (algebraic

methods) 241

accelerated reference frames 95

acceleration (definition) 11

acceleration in planar polar coordinates

31

acceptance (Metropolis algorithm)

412

accuracy for optical mappings 197

action

and reaction : weak and strong

forms 8, 9

functional 47

principle 55

and reaction 8, 38, 119

activated state (thermodynamics,

k B T E i) 341

active charge 119

active gravitational mass 8

actual (versus virtual) orbits 47, 48

addition rules for angular momenta

255, 270

additivity of partial entropies 415

additivity of the entropy 365, 413, 414

adiabatic

expansion 324

demagnetization 372

demagnetization (low temperatures)

371

adiabatics versus isotherms 325

admixture of excited states

(“polariza-tion”) 262

aether (pre-Einstein) 58

Aharonov-Bohm effect 281, 287, 295

algebraic methods (in quantum mechanics) 241

Alice (quantum cryptography) 289, 297

alkali atoms 256 alternating parity 226 Amp`ere’s

law 145 current loops (always equivalent to magnetic dipoles) 149

law 145, 156 law including Maxwell’s displacement current 153

amplitude resonance curve 20 angular momentum

operators (orbital part) 235 elementary treatment 24

of a rigid body 73, 77 orbital part, spin part 236 quantization 351

quantum number l 237 anholonomous constraints 45, 89 antiferromagnetism 275

aperture (rectangular, circular, Fraunhofer diffraction) 198 aphelion (as opposed to perihelion) 34 arc length 12

archive kilogram 7 area velocity 38 Arrott’s equation (magnetism) 330 artificial atoms (quantum dots) 285 ascending ladder operator 243 aspects of relativity (Part I, Part II) 301

asymmetric heavy top 84 autonomous 86

Avogadro’s law (of constant propor-tions) 303, 335

Trang 8

436 Index

axial (versus polar) vectors: (v1× v2)

71

azimuth ϕ 126

ballistically driven oscillation 18

Bardeen, Cooper, Schrieffer (BCS)

277, 395

barometric pressure 352

barrier (tunneling) 229

basic quantities 7

battery 127

battery voltage 128

BCS theory (Bardeen, Cooper, and

Schrieffer) 277, 395

beats 183

Bell 279, 281, 295

Bell experiments 281

Bernoulli’s general pressure formula

335, 336, 338, 384

Berry phases 281, 282

biaxial

crystals (anomalous birefringence)

190

versus uniaxial crystals

(birefrin-gence) 191

Binet ellipsoid 78

biological danger (of the energy impact

of high-frequency radiation fields)

171

Biot and Savart 148, 149

birefringence

crystal optics 188

Fresnel ellipsoid versus index ellipsoid

(E versus D) 192

phase velocity versus ray velocity

192

black holes (stars) 97, 387

black-body radiation laws 207

blackening function (of a photographic

plate) 200

Bob (quantum cryptography) 289,

297

Bohr

’s atomic model 209

’s magneton μ B 250, 406

-Sommerfeld quantization 209

’s atomic radius 237

(Copenhagen interpretation of

quantum mechanics) 220, 295

general remarks (if at all) 4, 209 bolometry 207, 347

Boltzmann 414

’s constant k B 184, 302 -Gibbs distribution (canonical ensemble) 337, 343, 344, 427 -Gibbs distribution (grand canonical)

367, 381, 394, 428 probabilities 302 statistics 381 Born 209, 220 Bose and Fermi gases 335, 337, 379 Bose and Fermi statistics 337 Bose-Einstein condensation 278, 371,

374, 375, 391 bosons 252 bosons and fermions 379, 383 bound states 225

bound systems in a box 224 boundary

currents (for superconductors) 146 divergence 138

rotation 138 value problem (heat conduction) 307

Boyle-Mariotte law (ideal gas) 324, 335

brane theories (formal membranes etc.) 4

bucket experiment 98 building up of the oscillation amplitude 69

CV = γk B T (in metals) 385 caloric (versus thermal) equation of state 317

calorie (heat) 306 canonical

and grand canonical ensembles 366 angular-momentum commutation relations 243

ensemble (Boltzmann-Gibbs) 337 momentum (as opposed to the kinetic momentum) 61

and grand canonical ensembles 366 commutation relation 216

ensembles (microcanonical, canoni-cal, grand canonical) 367 equations of motion 53, 248

Trang 9

Index 437 transformations 53

ensemble (Boltzmann-Gibbs) 427

capacities (plate, sphere, cylinder)

131

capacitor 127

capacity 127, 131

Cardani suspension 81, 82

Carnot

coordinates 358

heat engines 355

process 355, 358

process, infinitesimal

(Clausius-Clapeyron) 370

cat states (Schr¨odinger) 221

Cauchy problem (initial values, heat

diffusion) 307, 311

causality 21

cause and effect 169

center of mass, definition 23

center of mass, theorem 29

centrifugal force 39, 96

centripetal acceleration 12

cgs system 7

chaos 4, 80, 85, 86

charge

density (general) 114

active and passive 119

density (true versus effective) 165

charged superfluid 395

chemical

phase equilibria 413

potential μ 314, 330, 338, 346, 365,

366, 379, 392, 393, 418, 428

potential μ R for a droplet 425

chirality 287

chromodynamics 120

circulation 116

classical ideal gas 337, 339

classical mechanics (Part I) 301

classification of Minkowski four-vectors:

space-like, light-like, time-like

101

Clausius

-Clapeyron equations 305, 369

impossibility of an ideal heat pump

355

pressure in interacting systems 341

Clebsch-Gordan coefficients 256

closed systems 363 co-moving

clock 96 with the particle (relativistic) 55 cartesian vectors for a rigid body 79

clock 59 coexistence region Arrott 331 van der Waals 328, 329

coherence length ξ(T )

(superconductiv-ity) 397 coherence length and time 199 coherent superposition 199, 283, 285,

291, 295 coherent superposition (Schr¨odinger’s cat) 220

comets 37 commutation relation (canonical) 216 commutator (quantum mechanics)

53, 294 complexity 315 complexity (quantitative measure:

entropy S) 429 composition of angular momenta 255 compressibility 319, 408

compressional work 313 Compton effect 208 computer simulations 411 condensate 394

condensation phenomena 383 configurations (microstates) 359 confinement potential (of a quantum dot) 286

conjugate field 404 conservation law 50 conservation theorems 49 conservative forces 28 constraints 48, 89, 91 continuity equation electrodynamics 50, 153 generalizations 156 Minkowski formulation 176 probability current 228 electrodynamics 153, 156 continuous spectrum (absolute continuous) 215 Cooper pairs 277, 395, 396

Trang 10

438 Index

Copenhagen interpretation of quantum

mechanics 220, 295

Coriolis force 27, 45, 96, 97

Cornu’s spiral 195

correct linear combinations (degenerate

perturbation theory) 264

cosmology 4

Coulomb integral 272

Coulomb’s law 8, 110, 119

counter-current principle 323

coupled modes 64

coupled pendula 65

creation (and destruction) operators

(harmonic oscillator) 241, 242

critical

exponents 330

behavior 332

density 393

droplet radius R c 425

equation of state 332

exponents 331, 407

isotherm 330

quantities 328

region 408

temperature 393, 396, 408

cryotechnology 322

crystal optics 78

crystal optics (birefringence) 188

Curie-Weiss law 330

Curie-Weiss law (ferromagnetism,

antiferromagnetism) 304

current density (true versus effective)

165

curvilinear coordinates 126

cut-off frequency ωDebye 401

cyclic coordinates (→ conservation

laws) 49, 83, 92

cylindrical coordinates 126, 127

cylindrical symmetry 124

d’Alembert

’s principle 89

equation 165, 166, 168

operator 166

Dalton 335

Davisson and Germer 210

de Broglie 4, 209

de Broglie’s hypothesis of “matter

waves” 209, 210, 350

de-icing salt 422 Debye theory (heat capacity of solids) 399

decoupling by diagonalization 64 decoupling of space and time in Galilean transforms 56 degeneracy of the angular momentum (diatomic molecules) 351 degeneracy pressure 389, 391 degenerate

Fermi gas 386 perturbation theory 262 electron gas (metals plus white dwarf stars) 390

Fermi gas 418 perturbation theory 262 degrees of freedom 45 demagnetization tensor 142 density operator (statistical operator)

377, 378 derived quantity 7 descending ladder operator 243 determinant 147

deterministic chaos 87 development of stars 387 diagonalization 65 diamagnetism 250, 275 diatomic

molecules 340, 341 molecules (rotational energy) 350 molecules (vibrations) 352 dielectric displacement 134 dielectric systems 132, 136 dielectricity (tensorial behavior) 188 difference operation 143

differences in heat capacities (C p − C V,

C H − C m) 318 differential

cross-section 42 geometry in a curved Minkowski manifold 96

operation 143 diffraction (Fresnel diffraction versus Fraunhofer diffraction) 193 diffusion of heat 306

dimension 126 dipole

limit 133

Ngày đăng: 06/07/2014, 17:20