NOMENCLATURE Roman Letter Symbols a grinding cut depth, m ARMA output coefficient, dimensionless A state matrix, dimensionless A1 preexponential frequency factor in cure kinetics model, s
Trang 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1297],(67)
Lines: 1842 to 1991
———
-1.37268pt PgVar
———
Long Page PgEnds: TEX [1297],(67)
Least Squares IfN consecutive measurements ofthe output y(i), 1 = 1 · · · N,
are made at successive sampling periods, these can be concatenated in a measured output vectorYas
Y= [y(n + 1)y(n + 2) · · ·y(n + N)]T (17.109)
These will be compared with their respective predictions Y by the ARMA process
model, in which the corresponding augmented vectorsΦ can be assembled in
ma-trixΦ:
Φ = [ΦT(n) ΦT(n + 1) · · · ΦT(n + N − 1)]T (17.110) where the elementary vectorsΦ also contain the previously measured outputsy (i),
i = 1 · · · n and inputs Q(i), i = 1 · · · n Thus the ARMA model ofthe thermal system
can be written as Y= ΦΘ The least squares method minimizes the quadratic index
ofthe output deviationsε =Y − Y (i.e., J = εTε) setting the parameters Θ to
Θ = (ΦTΦ)−1Y = Φ†Y (17.111) whereΦ† is the pseudoinverse of Φ.
NOMENCLATURE
Roman Letter Symbols
a grinding cut depth, m
ARMA output coefficient, dimensionless
A state matrix, dimensionless
A1 preexponential frequency factor in cure kinetics model,
s−1
Ac, Ao , A1 cross-sectional area, m2
b chip width, m
grinding width, m saturation point, dimensionless ARMA input coefficient, dimensionless
B input matrix, dimensionless
B1, B2, B3 parameters defined in eqs (17.26)–(17.28),
dimensionless
Bi Biot number, dimensionless
ˆc degree ofcrystallization, dimensionless
c specific heat capacity, kJ/kg· K
saturation level, dimensionless
C output matrix, dimensionless
C A instantaneous resin concentration in the resin–catalyst
mixture at any time,t, kg/m3
C A0 initial resin concentration in the resin–catalyst mixture,
kg/m3
d delay, dimensionless
Trang 21298 HEAT TRANSFER IN MANUFACTURING AND MATERIALS PROCESSING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1298],(68)
Lines: 1991 to 1991
———
0.00563pt PgVar
———
Normal Page PgEnds: TEX [1298],(68)
d s grinding wheel diameter, m
differential, dimensionless period, dimensionless
D direct matrix, dimensionless
D b degree ofbonding, dimensionless
D h degree ofhealing, dimensionless
Dic degree ofintimate contact, dimensionless
e error, dimensionless
E activation energy for viscosity in the chemorheological
model, kJ/kmol error (Laplace transform), dimensionless expectation, dimensionless
E1, E2 activation energies in the cure kinetics models, kJ/kmol
f transfer function, dimensionless
F, F forces associated with cutting, N
g controller transfer function, dimensionless
G transfer function, dimensionless
G discrete state matrix, dimensionless
h heat transfer coefficient, W/m2· K
depth ofcut, m thermoplastic tow thickness, m sensor transfer function, dimensionless discrete-time index, dimensionless
H plate thickness, m
H detectability matrix, dimensionless
discrete input matrix, dimensionless
HT total heat ofcrystallization, kJ/kg
Hu theoretical ultimate heat ofcrystallization, kJ/kg
∆H c heat ofcrystallization, kJ/kg
∆H R heat ofthe cure reaction, kJ/kg
i discrete time index, dimensionless
I identity matrix, dimensionless
J quadratic performance index, dimensionless
k thermal conductivity, W/m· K
discrete time index, dimensionless
k o Kozeny constant, dimensionless
K gain, dimensionless
K controller matrix, dimensionless
Ko modified Bessel function ofthe first kind, oforder zero,
dimensionless
K10, K20 preexponential frequency factors in the cure kinetics
models, s−1
l input number, dimensionless
length ofheated region, m
Trang 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1299],(69)
Lines: 1991 to 1991
———
0.73116pt PgVar
———
Normal Page PgEnds: TEX [1299],(69)
l c frictional contact length, m
l s shear length, m
thickness, m characteristic length, m
L observer matrix, dimensionless
m, n exponents in the cure kinetics models, dimensionless
output number and state number, dimensionless
m1, m2
Pe±Pe2+ 4 Bi/2, dimensionless
N describing function, dimensionless
sample number, dimensionless
p stiffness of a fiber network, Pa
P perimeter, m
grinding power, W pressure, Pa
P pdrs matrix, dimensionless
Pe P´eclet number, dimensionless
q heat flux, W/m2
Q heat source strength, W
Q(t) heat release during cure per unit mass ofresin-catalyst
sample, kJ/kg
Q state penalty matrix, dimensionless
r, x, y, z spatial coordinates, m
r f fiber radius, m
R fraction of shear energy removed by the chip,
dimensionless void radius, m universal gas constant, kJ/kmol· K
R, X, Y coordinates, dimensionless
R resultant force, N
input penalty matrix, dimensionless
s Laplace variable, dimensionless
S radius ofa resin shell surrounding a void, m
S stabilizability matrix, dimensionless
T temperature, K
sampling period, s
u grinding energy, J/m3
integration variable, dimensionless
v velocity, m/s
void fraction, dimensionless output noise, dimensionless excitation, dimensionless
v a maximum fiber volume fraction, dimensionless
v f fiber volume fraction in the composite, dimensionless
Trang 41300 HEAT TRANSFER IN MANUFACTURING AND MATERIALS PROCESSING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1300],(70)
Lines: 1991 to 2068
———
12.20792pt PgVar
———
Normal Page PgEnds: TEX [1300],(70)
v I initial fiber volume fraction, dimensionless
V velocity, m/s
Lyapunov function, dimensionless
w state noise, dimensionless
W D deformation work per unit volume, J/m3
y parameter in the degradation kinetics model,
dimensionless output, dimensionless
y output measurement, dimensionless
Y measured output, dimensionless
z Z-transform variable, dimensionless
Greek Letter Symbols
α thermal diffusivity, m2/s
degree ofdegradation, dimensionless
β friction angle
shape constant, dimensionless
γ characteristic thickness, m [= A c /P ]
adaptation gain, dimensionless
γo rake angle, deg
ε fraction of grinding power entering the workpiece as
heat, dimensionless degree ofcure, dimensionless [= (C A0 − C A)/C AO] state deviation, dimensionless
θ temperature, dimensionless
Θ parameters, dimensionless
κ permeability, m2
λ constant in the chemorheological model, dimensionless
eigenvalue (observer), dimensionless
µ coefficient of friction, dimensionless
dynamic viscosity, Pa· s
eigenvalue (controller), dimensionless
ρ density, kg/m3
σ interfacial bond strength, Pa
τ time, dimensionless
time (Lagrangian), s
τs flow stress, N/m2
φ porosity, dimensionless
characteristic polynomial, dimensionless
φo shear plane angle, deg
ϕ resin volume fraction in the fiber–resin mixture,
dimensionless [= 1 − v f]
Φ augmented state, dimensionless
ω angular frequency, s−1
Trang 51 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1301],(71)
Lines: 2068 to 2078
———
2.19565pt PgVar
———
Normal Page PgEnds: TEX [1301],(71)
Subscripts and Superscripts
∗ dimensionless
estimated
· time derivative
† pseudoinverse
atm atmospheric
controller controllability
cl closed loop
d desired reference
derivative
gas
ambient reference
proportional
refreference value
setting
x, y, z along the respective coordinate directions
∞ ultimate (maximum realizable) value
REFERENCES
Adams, K L., and Rebenfeld, L (1991a) Permeability Characteristics of Multilayer Fiber
Reinforcements, I: Experimental Observations, Polym Compos., 12, 179–185.
Adams, K L., and Rebenfeld, L (1991b) Permeability Characteristics of Multilayer Fiber
Reinforcements, II: Theoretical Model, Polym Compos., 12, 186.
Trang 61302 HEAT TRANSFER IN MANUFACTURING AND MATERIALS PROCESSING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1302],(72)
Lines: 2078 to 2122
———
0.0pt PgVar
———
Custom Page (7.0pt) PgEnds: TEX [1302],(72)
Agarwal, V (1991) The Role ofMolecular Mobility in the Consolidation and Bonding
ofTher-moplastic Composite Materials, Technical Report 91–39, Center for Composite Materials,
University ofDelaware, Newark, DE
Altan, T., Oh, S., and Gegel, H (1983) Metal Forming: Fundamentals and Applications,
American Society for Metals, Metals Park, OH
ASM (1991) ASM Handbook Volume 4: Heat Treating, American Society for Metals, Metals Park, OH
Bastien, L J., and Gillespie, J W., Jr (1991) A Non-isothermal Healing Model for Amorphous
Thermoplastics, Polym Eng Sci., 31(24), 1720–1730.
Bogetti, T A., and Gillespie, J W., Jr (1991) Two-Dimensional Cure Simulation ofThick
Thermosetting Composites, J Compos Mater., 25(3), 239–273.
Boothroyd, G (1975) Fundamentals of Metal Cutting and Machine Tools, Hemisphere
Pub-lishing, Washington, DC, Chap 3
Broyer, E., and Macosko, C W (1976) Heat Transfer and Reaction in Polymer Reaction
Injection Molding, AIChE J., 22(2), 268–276.
Butler, C A., McCullough, R L., Pitchumani, R., and Gillespie, J W., Jr (1998) An Analysis
ofMechanisms Governing Fusion Bonding ofThermoplastic Composites, J Thermoplastic
Compos Mater., 11(4), 338–363.
Carslaw, H S., and Jaeger, J C (1959) Conduction of Heat in Solids, 2nd ed., Oxford
Uni-versity Press, London
Chapman, T J., Gillespie, J W., Jr., Pipes, R B., Månson, J-A E., and Seferis, J C (1990)
Prediction ofProcess-Induced Residual Stresses in Thermoplastic Composites, J Compos.
Mater., 24, 616–643.
Chiao, L., and Lyon, R E (1990) A Fundamental Approach to Resin Cure Kinetics, J
Com-pos Mater., 24, 739–752.
Dara, P H., and Loos, A C (1985) Thermoplastic Matrix Composite Processing Model,
Report CCMS-85-10, Center for Composite Materials and Structures, Virginia Polytechnic
Institute and State University, Blacksburg, VA
Davè, R S., Kardos, J L., and Dudukovic, M P (1987) A Model for Resin Flow during
Composite Processing, I: General Mathematical Development, Polym Compos., 8, 29.
Davè, R S., Mallow, A., Kardos, J L., and Dudukovic, M P (1990) Science-Based Guidelines
for the Autoclave Process for Composites Manufacturing, SAMPE J., 26(3), 31.
Dawson, P R., and Malkin, S (1984) Inclined Moving Heat Source Model for Calculating
Metal Cutting Temperatures, ASME J Eng Ind., 106, 179–186.
Day, M., Cooney, J D., and Wiles, D M (1989) A Kinetic Study ofthe Thermal
Decom-position ofPoly(Aryl-Ether-Ether-Ketone) (PEEK) in Nitrogen, Polym Eng Sci., 29(1),
19–22
DeGarmo, E P., Black, J T., and Kohser, R A (1997) Materials and Processing in
Manufac-turing, 8th ed., Prentice Hall, Upper Saddle River, NJ.
de Gennes, P G (1971) Reptation ofa Polymer Chain in the Presence ofFixed Obstacles,
J Chem Phys., 55(2), 572–579.
DesRuisseaux, N R., and Zerkle, R D (1970) Temperature in Semi-infinite and Cylindrical
Bodies Subjected to Moving Heat Sources and Surface Cooling, J Heat Transfer, 92, 456–
464
DeVries, W R (1992) Analysis of Material Removal Processes, Springer-Verlag, New York.
Diwekar, U M and Pitchumani, R (1993) Optimal Cure Cycles for Thermoset Composites
Trang 71 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1303],(73)
Lines: 2122 to 2166
———
9.0pt PgVar
———
Custom Page (7.0pt) PgEnds: TEX [1303],(73)
Manufacture, in Advanced Computations in Materials Processing, V Prasad and R V.
Arimilli, eds., ASME-HTD-241, ASME, New York, pp 23–31.
Dowson, D., Parsons, B., and Lidgitt, P J (1972) An Elasto-plasto-hydrodynamic Lubrication
Analysis ofthe Wire Drawing Process, Proc Symposium on Elasto-hydrodynamic
Lubri-cation, Institute ofMechanical Engineers, London, pp 94–106.
El-Domiaty, A., and Kassab, S Z (1998) Temperature Rise in Wire Drawing, J Mater.
Process Technol., 83, 72–83.
Flemings, M C (1974) Solidification Processing, McGraw-Hill, New York.
Gaskell, D R (1992) An Introduction to Transport Phenomena in Materials Engineering,
Macmillan, New York
Guceri, S I., ed (1992) Journal of Materials Processing and Manufacturing Science,
Tech-nomic Publishing, Lancaster, PA (Vol 1, No 1)
Guceri, S I., ed (1993) Transport Phenomena in Processing, Technomic Publishing,
Lan-caster, PA
Guo, C., and Malkin, S (1992) Heat Transfer in Grinding, J Mater Process Manuf Sci., 1,
16–27
Guo, C., and Malkin, S (1996) Inverse Heat Transfer Analysis of Grinding, 1 and 2, J Eng.
Ind., 118, 137–149.
Guthrie, R I L (1989) Engineering in Process Metallurgy, Oxford Science Publishers,
Clarendon Press, Oxford
Gutowski, T G (1985) A Resin Flow/Fiber Deformation Model for Composites, SAMPE Q.,
16(4), 58–65
Gutowski, T G., Cai, Z., Kingery, J., and Wineman, S J (1986) Resin Flow/Fiber Deformation
Experiments, SAMPE Q., 17, 54–58.
Gutowski, T G., Morigaki, T., and Cai, Z (1987) The Consolidation ofLaminate Composites,
J Compos Mater., 21, 172–188.
Han, L S., and Cosner, A A (1981) Effective Thermal Conductivities of Fibrous Composites,
J Heat Transfer, 103, 387–392.
Han, C D., and Lem, K W (1983) Chemorheology ofThermosetting Resins, I: The
Chemo-rheology and Curing Kinetics ofUnsaturated Polyester Resin, J Appl Polym Sci., 28,
3155–3182
Han, C D., Lee, D S., and Chin, H B (1986) Development ofa Mathematical Model for the
Pultrusion Process, Polym Eng Sci., 26(6), 393–404.
Hashin, Z (1983) Analysis ofComposite Materials: A Survey, J Appl Mech., 50, 481–505.
Incropera, F P., and DeWitt, D P (1996) Fundamentals of Heat Transfer, 3rd ed., Wiley, New
York
Jacobs, H R., and Hartnett, J P., eds (1992) Thermal Engineering: Emerging Technologies
and Critical Phenomena, NSF Workshop Report, Grant CTS-91-04006, National Science
Foundation, Washington, DC
Jaluria, Y (1993) Transport from Continuously Moving Materials Undergoing Thermal
Pro-cessing, Annu Rev Heat Transfer, 4, 187–245.
Jen, T C., and Lavine, A S (1995) A Variable Heat Flux Model ofHeat Transfer in Grinding:
Model Development, J Heat Transfer, 117, 473–478.
Ju, Y., Farris, T N., and Chandrasekar, S (1998) Theoretical Analysis ofHeat Partition and
Temperatures in Grinding, J Tribol., 120, 789–794.
Trang 81304 HEAT TRANSFER IN MANUFACTURING AND MATERIALS PROCESSING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1304],(74)
Lines: 2166 to 2210
———
0.0pt PgVar
———
Custom Page (5.0pt) PgEnds: TEX [1304],(74)
Kalpakjian, S (1996) Manufacturing Engineering and Technology, 3rd ed., Addison-Wesley,
Reading, MA
Kardos, J L (1997) The Processing Science ofReactive Polymer Composites, in Advanced
Composites Manufacturing, T G Gutowski, ed., Wiley, New York, pp 43–80.
Kardos, J L., Dudukovic, M P., McKague, E L., and Lehman, M W (1986) Void Formation
and Transport during Processing ofThermosetting Matrix Composites, in Advances in
Polymer Science, Vol 80, K Dusek, ed., Springer-Verlag, Berlin.
Kitto, J B., Fiveland, W A., Latham, C E., and Peterson, G P (1995) Advances in Thermal
Engineering, Mech Eng., 117(3), 88–92.
Kou, S (1996) Transport Phenomena in Materials Processing, Wiley, New York.
Lam, R C., and Kardos, J L (1988) The Permeability ofAligned and Cross-Plied Fiber
Beds during Processing ofContinuous Fiber Composites, in Proc American Society for
Composites, 3rd Conference, Seattle, WA, pp 3–11.
Lam, R C., and Kardos, J L (1991) The Permeability and Compressibility ofAligned and
Cross-Plied Carbon Fiber Beds during Processing ofComposites, Polym Eng Sci., 31,
1064
Lamontia, M A., Gruber, M B., and Gillespie Jr., J W (1992) Design, Manufacture and Testing ofAS-4 Graphite/PEEK Thermoplastic Composite 24-inch Ring-Stiffened
Cylin-der Model, in Proc Submarine Technology Symposium, Applied Physics Laboratory, Johns
Hopkins University, Baltimore
Lamontia, M A., Gruber, M B., Smoot, M A., Sloan, J., and Gillespie Jr., J W (1995) Perfor-mance ofa Filament Wound Graphite/Thermoplastic Composite Ring-Stiffened Pressure
Hull Model, J Thermoplastic Compos Mater., 8(1), 15–36.
Lavine, A S., and Jen, T C (1991) Thermal Aspects ofGrinding: Heat Transfer to Workpiece,
Wheel and Fluid, J Heat Transfer, 113, 296–303.
Lee, W I., and Springer, G S (1987) A Model ofthe Manufacturing Process ofThermoplastic
Matrix Composites, J Compos Mater., 21, 1017–1055.
Lee, W I., Loos, A C., and Springer, G S (1982) Heat ofReaction, Degree ofCure, and
Viscosity ofHercules 3501–6 Resin, J Compos Mater., 16, 510.
Loos, A C., and Springer, G S (1983) Curing ofEpoxy Matrix Composites, J Compos.
Mater., 17, 135–169.
Lucca, D A., and Wright, R N (1996) Heating Effects in the Drawing of Wire and Strip
under Hydrodynamic Lubrication Conditions, J Manuf Sci Eng., 118, 628–638.
Malkin, S (1984) Grinding ofMetals: Theory and Application, J Appl Metalwork., 3, 95–
109
Mantell, S C., and Springer, G S (1992) Manufacturing Process Models for Thermoplastic
Composites, J Compos Mater., 26(16), 2348–2377.
Martinez, G M (1991) Fast Cures for Thick Laminated Organic Matrix Composites, Chem.
Eng Sci., 46(2), 439–450.
Nam, J D., and Seferis, J C (1992) Generalized Composite Degradation Kinetics for
Poly-meric Systems under Isothermal and Nonisothermal Conditions, J Polym Sci B Polym.
Phys., 30, 455–463.
Ozawa, T (1971) Kinetics ofNon-isothermal Crystallization, Polymer, 12, 150–158.
Pillai, V., Beris, A., and Dhurjati, P (1994) Implementation ofModel-Based Optimal Tem-perature Profiles for Autoclave Curing of Composites Using a Knowledge-Based System,
Ind Eng Chem Res., 33, 2443–2452.
Trang 91 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1305],(75)
Lines: 2210 to 2249
———
2.0pt PgVar
———
Custom Page (5.0pt) PgEnds: TEX [1305],(75)
Pitchumani, R (1999) Evaluation ofThermal Conductivities ofDisordered Composite Media
Using a Fractal Model, J Heat Transfer, 121(1), 163–166.
Pitchumani, R (2002) Processing ofThermoplastic-Matrix Composites, in Annual Reviews
of Heat Transfer, Vol XIII, Begell House, New York.
Pitchumani, R., and Diwekar, U M (1994) Process Optimization for the Fabrication of
Partially-Cured Composites, in Transport Phenomena in Manufacturing and Materials
Processing, ASME-HTD-280, ASME, New York, pp 1–11.
Pitchumani, R., and Yao, S C (1993) Nondimensional Analysis ofa Thermoset Composites
Manufacture, J Compos Mater., 27(6), 613–636.
Pitchumani, R., Ranganathan, S., Don, R C., and Gillespie, J W., Jr (1994) Analysis of
On-Line Consolidation during the Thermoplastic Tow-Placement Process, in Thermal
Pro-cessing of Materials: Thermo-mechanics, Controls, and Composites, V Prasad et al., eds., ASME-HTD-289, ASME, New York, pp 223–234.
Pitchumani, R., Ranganathan, S., Don, R C., Gillespie, J W., Jr., and Lamontia, M A
(1996) Analysis ofTransport Phenomena Governing Interfacial Bonding and Void
Dy-namics during Thermoplastic Tow-Placement, Int J Heat Mass Transfer, 39(9), 1883–
1897
Pitchumani, R., Gillespie, J W., Jr., and Lamontia, M A (1997) Design and Optimization
ofa Thermoplastic Tow-Placement Process with In-situ Consolidation, J Compos Mater.,
31(3), 244–275
Poirier, D R., and Geiger, G H (1994) Transport Phenomena in Materials Processing, TMS,
Warrendale, PA
Poirier, D R., and Poirier, E J (1992) Heat Transfer Fundamentals for Metal Casting, TMS,
Warrendale, PA
Prasad, V., Lavine, A., Zumbrunnen, D., and Longtin, J., eds (1998) Thermal Aspects of Manufacturing and Materials Processing: Emerging Technologies and Research Issues, Report ofan NSF/ASME Workshop, Anaheim, CA, Nov 18–19
Pusatcioglu, S Y., Fricke, A L., and Hassler, J C (1979) Heats ofReaction and Kinetics of
a Thermoset Polyester, J Appl Polym Sci., 24, 937–946.
Radford, D W., and Tong, T W (2000) Heat Transfer in Manufacturing, in CRC Handbook
of Thermal Engineering, F Kreith, ed., CRC Press, Boca Raton, FL, pp 4.264–4.286.
Rai, N., and Pitchumani, R (1997a) Optimal Cure Cycles for the Fabrication of
Thermo-setting-Matrix Composites, Polym Compos., 18(1), 566–581.
Rai, N., and Pitchumani, R (1997b) Neural Network-Based Optimal Curing ofComposite
Materials, J Mater Process Manuf Sci., 6(1), 39–62.
Ramakrishnan, B T., Zhu, L., and Pitchumani, R (2000) Curing ofComposites Using Internal
Resistive Heating, J Manuf Sci Eng., 122(1), 124–131.
Ranganathan, S., Advani, S G., and Lamontia, M A (1995) A Non-isothermal Process Model for Consolidation and Void Reduction during In-situ Tow-Placement of Thermoplastic
Composites, J Compos Mater., 29(8), 1040–1062.
Schey, J A (1983) Tribology in Metalworking: Friction, Lubrication and Wear, American
Society for Metals, Metals Park, OH
Schey, J A (2000) Introduction to Manufacturing Processes, 3rd ed., McGraw-Hill, New
York
Schnabel, W (1981) Polymer Degradation: Principles and Practical Applications,
Macmil-lan, New York
Trang 101306 HEAT TRANSFER IN MANUFACTURING AND MATERIALS PROCESSING
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[1306],(76)
Lines: 2249 to 2294
———
13.0pt PgVar
———
Custom Page (7.0pt) PgEnds: TEX [1306],(76)
Shah, R K., Roshan, H Md., Sastri, V M K., and Padmanabhan, K A., eds (1992)
Thermo-mechanical Aspects of Manufacturing and Materials Processing, Hemisphere Publishing,
New York
Shaw, M C (1984) Metal Cutting Principles, Oxford University Presss, Oxford, Chap 12.
Skartsis, L., and Kardos, J L (1990) The Newtonian Permeability and Consolidation
ofOri-ented Carbon Fiber Beds, Proc American Society for Composites, 5th Technical
Confer-ence, p 548.
Skartsis, L., Khomami, B., and Kardos, J L (1992) Resin Flow through Fiber Beds during Composite Manufacturing Processes, II: Numerical and Experimental Studies of
Newto-nian Flow through Ideal and Actual Fiber Beds, Polym Eng Sci., 32, 231.
Snidle, R W (1977) Contribution to the Theory ofFrictional Heating and the Distribution of
Temperature in Wires and Strips during Drawing, Wear, 44, 270–294.
Snidle, R W., Parsons, B., and Dowson, D (1976) A Thermal Hydrodynamic Lubrication
Theory for Hydrostatic Extrusion of Low Strength Materials, J Lubr Technol., 98, 335–
343
Sourour, S., and Kamal, M R (1976) Differential Scanning Calorimetry of Epoxy Cure:
Isothermal Cure Kinetics, Thermochim Acta, 41, 14.
Springer, G S (1982) Resin Flow during the Cure ofFiber Reinforced Composites, J Compos.
Mater., 16, 400.
Steen, W M (1991) Laser Material Processing, Springer-Verlag, London.
Steiner, K V., Bauer, B M., Pitchumani, R., and Gillespie, J W., Jr (1995) An Experimental
Verification ofModeling and Control for Thermoplastic Tape Placement, Proc SAMPE
International Conference, Anaheim, CA, Apr., pp 1550–1559.
Stephenson, D P (1991) Assessment ofSteady-State Metal Cutting Temperature Models
Based on Simultaneous Infrared and Thermocouple Data, J Eng Ind., 113, 121–128.
Tanasawa, I., and Lior, N., eds (1992) Heat and Mass Transfer in Materials Processing,
Hemisphere Publishing, New York
Tay, A O., Stevenson, M G., de Vahl Davis, G., and Oxley, P L B (1976) A Numerical
Method for Calculating Temperature Distributions in Machining, Int J Mach Tool Des.
Res., 16, 335–349.
Trigger, K J., and Chao, B T (1951) An Analytical Evaluation ofMetal Cutting
Tempera-tures, Trans ASME, 73, 57–68.
Tseng, A A., Tong, S X., Maslen, S H., and Mills, J J (1990) Thermal Behavior
ofAlu-minum Rolling, J Heat Transfer, 112, 301–308.
Velisaris, C N., and Seferis, J C (1986) Crystallization Kinetics of Polyetheretherketone
(PEEK) Matrices, Polym Eng Sci., 26(22), 1574–1581.
Venuvinod, P K., and Lau, W S (1986) Estimation ofRake Temperatures for Oblique Cutting,
Int J Mach Tool Des Res., 26, 1–14.
Viskanta, R., and Bergman, T (2000) Heat Transfer in Materials Processing, in Handbook of
Heat Transfer Applications, 3rd ed., W M Rohsenow, J P Hartnett, and E N Ganic, eds.,
McGraw-Hill, New York, pp 18.1–18.74
Walsh, S M., and Charmchi, M (1988) Heat Transfer Characteristics in a Pultrusion Process,
Proc National Heat Transfer Conference, Houston, TX, Vol 23.
Weiner, J H (1955) Shear Plane Temperature Distribution in Orthogonal Cutting, ASME
Trans., 77, 1331–1341.