1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Heat Transfer Handbook part 40 pot

10 262 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 104,95 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

382 THERMAL SPREADING AND CONTACT RESISTANCES1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [382],122 Lines

Trang 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[381],(121)

Lines: 4609 to 4609

———

0.91072pt PgVar

———

Normal Page PgEnds: TEX [381],(121)

N number ofsides in a polygon, dimensionless

number ofdiscrete sources, dimensionless number ofmicrocontacts, dimensionless

N(k) numerator function, dimensionless

n counter, dimensionless

Hertz elastic parameter, dimensionless combination parameter, dimensionless contact spot density, 1/m2

pressure, N/m2or Pa

P g,∞ reference gas pressure, N/m2or Pa

P m mean contact area pressure, N/m2or Pa

Pr Prandtl number, dimensionless

Q heat transfer rate, W

Q g gap heat transfer rate, W

R thermal resistance, K/W

R g thermal resistance ofgap, K/W

Rmac macroscopic thermal resistance ofgap, K/W

Rmic microscopic thermal resistance ofgap, K/W

R r radiation resistance, K/W

R∗ combination ofterms, dimensionless

R∗ combination ofterms, dimensionless

R

j combination ofterms, dimensionless

R

r combination ofterms, dimensionless

r radial coordinate, m

S f material yield or flow stress, N/m2

s side dimension, m

T g gas molecule temperature, K

T g,∞ reference temperature, K

∆T temperature drop or difference, K

∆T j joint temperature drop, K

T area-averaged temperature, K

T1 temperature, K

T2 temperature, K

t layer thickness, m

thickness ofelastic layer, m time, s

t1 layer 1 thickness, m

thickness ofisotropic plate, m

t2 layer 2 (substrate) thickness, m

u local gap thickness, dimensionless

position, dimensionless

w(x,y) total local displacement, m

Trang 2

382 THERMAL SPREADING AND CONTACT RESISTANCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[382],(122)

Lines: 4609 to 4696

———

0.77428pt PgVar

———

Normal Page PgEnds: TEX [382],(122)

w o approach ofcontacting bodies due to loading, m

X c coordinate ofcenter ofeccentric rectangular area, m

x length coordinate, m

Y mean plane separation, m

Y c coordinate ofcenter ofeccentric rectangular area, m

length coordinate, m

z length coordinate, m

Greek Letter Symbols

α ratio ofsemimajor axes, dimensionless

thermal diffusivity, m2/s thermal conductivity ratio, dimensionless accommodation parameter or coefficient, dimensionless

α1 accommodation coefficient, dimensionless

α2 accommodation coefficient, dimensionless

β combination ofterms, dimensionless

fluid property parameter, dimensionless

βm,n eigenvalue, dimensionless

Γ(x) gamma function of argumentx, dimensionless

γ aspect ratio parameter, dimensionless

ratio ofspecific heats, dimensionless

γT combination ofterms, dimensionless

∆ change in, dimensionless

physical parameter, m2/N

δ local gap thickness, m

δ0 local gap thickness under zero-load conditions, m

δm eigenvalue, dimensionless

δn eigenvalues ofJ n (x), dimensionless

radius ratio, dimensionless ellipse aspect ratio, dimensionless emissivity ofhemisphere, dimensionless emissivity ofdisk, dimensionless relative contact spot size, dimensionless

c contact strain, dimensionless

ζ ellipsoidal coordinate, m

dummy variable, dimensionless

θ temperature excess, K

θ area averaged temperature rise, K

θ(r,z) temperature excess field, K

θ(τ) ellipsoidal temperature rise, K

θo centroid temperature rise, K

θs temperature rise due to spreading, K

κ parameter, dimensionless

Trang 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[383],(123)

Lines: 4696 to 4756

———

0.93477pt PgVar

———

Normal Page PgEnds: TEX [383],(123)

thermal conductivity ratio, dimensionless

Λ mean free path length of gas molecules, m

Λg molecular mean free path length at reference temperature, m

Λo reference value of mean free path length, m

λ dummy variable, dimensions vary

relative mean free path length, dimensionless

λ1 combination ofterms, dimensionless

λ2 combination ofterms, dimensionless

λn eigenvalue, dimensionless

µ dynamic viscosity, N· s2/m

positive root ofan equation, dimensionless molecular weight ratio, dimensionless

ν arbitrary order ofBessel function, dimensionless

Poisson’s ratio, dimensionless

ξ length ratio, dimensionless

ρ radius ofcurvature, m

radius ofelastic hemisphere, m

ρn,e boundary condition parameter, dimensionless

1 rectangular aspect ratio, dimensionless

combination ofterms, dimensionless

σ Stefan–Boltzmann constant, 5.67 × 10−8W/m2· K4

effective surface roughness, m or microns

τ thickness, dimensionless

τ1 thickness, dimensionless

τ2 thickness, dimensionless

τ∗ combination ofterms, dimensionless

combination ofterms, dimensionless

φn combination ofterms, dimensionless

ϕ combination ofterms, dimensionless

ϕ+ layer parameter, dimensionless

ϕ− layer parameter, dimensionless

ψ combination ofterms, dimensionless

spreading resistance, dimensionless spreading–constriction parameter, dimensionless amplitude angle, rad

ψmac macroscopic spreading–constriction parameter, dimensionless

ψmic microscopic spreading–constriction parameter, dimensionless

ψo combination ofterms, dimensionless

ψn combination ofterms, dimensionless

ψe,i combination ofterms, dimensionless

ψ∗ thermal elasto constriction parameter, dimensionless

ψ12 dimensional spreading resistance in layer–substrate

∇2 Laplacian operator, 1/m2

Trang 4

384 THERMAL SPREADING AND CONTACT RESISTANCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[384],(124)

Lines: 4756 to 4756

———

0.20874pt PgVar

———

Normal Page PgEnds: TEX [384],(124)

Subscripts

active area contact

circle circle

e elastic contact radius

ei layer thickness parameter

ep elastic–plastic radius ellipse ellipse

g, ∞ gas conductivity under continuum conditions

1 layer one layer

2 layer two layers

mean

counter

n, e combination ofterms

p plastic contact radius

polymer

q layer thickness parameter

r radiation or radiative

thin layer source area source source

Trang 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[385],(125)

Lines: 4756 to 4792

———

0.16562pt PgVar

———

Normal Page PgEnds: TEX [385],(125)

o value at centroid ofarea

Superscripts

i identifies ith source parameter

q isoflux boundary condition

T isothermal boundary condition

REFERENCES

Abramowitz, M., and Stegun, I A (1965) Handbook of Mathematical Functions, Dover, New

York

Antonetti, V W (1983) On the Use ofMetallic Coatings to Enhance Thermal Contact Con-ductance, Ph.D dissertation, University ofWaterloo, Waterloo, Ontario, Canada

Antonetti, V W., and Yovanovich, M M (1983) Using Metallic Coatings to Enhance Thermal

Contact Conductance ofElectronic Packages, in Heat Transfer in Electronic Equipment,

1983, ASME-HTD-28, ASME, New York, pp 71–77.

Antonetti, V W., and Yovanovich, M M (1985) Enhancement ofThermal Contact

Conduc-tance by Metallic Coatings: Theory and Experiments, J Heat Transfer, 107, Aug., pp 513–

519

Antonetti, V W., Whittle, T D., and Simons, R E (1991) An Approximate Thermal Contact

Conductance Correlation, in Experimental/Numerical Heat Transfer in Combustion and

Phase Change, ASME-HTD-170, ASME, New York.

Beck, J V (1979) Average Transient Temperature within a Body Heated by a Disk Heat

Source, in Heat Transfer, Thermal Control, and Heat Pipes, Progress in Aeronautics and

Astronautics, Vol 70, AIAA, New York, pp 3–24

Blackwell, J H (1972) Transient Heat Flow from a Thin Circular Disk Small-Time Solution,

J Aust Math Soc., 14, 433–442.

Braun, D., and Frohn, A (1976) Heat Transfer in Simple Monatomic Gases and in Binary

Mixtures ofMonatomic Gases, Int J Heat and Mass Transfer, 19, 1329–1335.

Burde, S S (1977) Thermal Contact Resistance between Smooth Spheres and Rough Flats, Ph.D Dissertation, Department ofMechanical Engineering, University at Waterloo, Water-loo, Ontario, Canada

Trang 6

386 THERMAL SPREADING AND CONTACT RESISTANCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[386],(126)

Lines: 4792 to 4831

———

8.0pt PgVar

———

Normal Page PgEnds: TEX [386],(126)

Burde, S S., and Yovanovich, M M (1978) Thermal Resistance at Smooth Sphere/Rough Flat Contacts: Theoretical Analysis, AIAA, 78–871, 2nd AIAA/ASME Thermophysics and Heat Transfer Conference, Palo Alto, CA

Bush, A W., and Gibson, R D (1979) A Theoretical Investigation ofThermal Contact

Conductance, J Appl Energy, 5, 11–22.

Bush, A W., Gibson, R D., and Thomas, T R (1975) The Elastic Contact ofa Rough Surface,

Wear, 35, 87–111.

Byrd, P F., and Friedman, M D (1971) Handbook of Elliptic Integrals for Engineers and

Scientists, 2nd ed., Springer-Verlag, New York.

Carslaw, H S., and Jaeger, J C (1959) Conduction of Heat in Solids, 2nd ed., Oxford

Uni-versity Press, London

Cetinkale, T N., and Fishenden, M (1951) Thermal Conductance ofMetal Surfaces in

Con-tact, Proc General Discussion on Heat Transfer, Institute ofMechanical Engineers,

London, pp 271–275

Chen, W T., and Engel, P A (1972) Impact and Contact Stress Analysis in Multilayer Media,

Int J Solids Struct., 8, 1257–1281.

Chow, Y L., and Yovanovich, M M (1982) The Shape Factor ofthe Capacitance ofa

Con-ductor, J Appl Physics, 53(12), 8470–8475.

Churchill, S W., and Usagi, R (1972) A General Expression for the Correlation of Rates of

Transfer and Other Phenomena, AIChE J., 18, 1121–1132.

Clausing, A M., and Chao, B T (1965) Thermal Contact Resistance in a Vacuum

Environ-ment,” J Heat Transfer, 87, 243–251.

Cooper, M G., Mikic, B B., and Yovanovich, M M (1969) Thermal Contact Conductance,

Int J Heat Mass Transfer, 12, 279–300.

DeVaal, J W (1988) Thermal Joint Conductance ofSurfaces Prepared by Grinding, Ph.D

dissertation, Department ofMechanical Engineering, University ofWaterloo, Waterloo, Ontario, Canada

DeVaal, J W., Yovanovich, M M., and Negus, K J (1987) The Effects of Surface Slope

Anisotropy on the Contact Conductance ofConforming Rough Surfaces, in Fundamentals

of Conduction and Recent Developments in Contact Resistance, HTD-69, ASME, New

York, pp 123–134

Dryden, J R (1983) The Effect ofa Surface Coating on the Constriction Resistance ofa Spot

on an Infinite Half-Plane, J Heat Transfer, 105, May, 408–410.

Dryden, J R., Yovanovich, M M., and Deakin, A S (1985) The Effect of Coatings on the Steady-State and Short Time Constriction Resistance for an Arbitrary Axisymmetric Flux,

J Heat Transfer, 107, Feb., 33–38.

Fisher, N J (1985) Analytical and Experimental Studies ofthe Thermal Contact Resistance ofSphere Layered Contact, M.A.Sc thesis, Department ofMechanical Engineering, Uni-versity ofWaterloo, Waterloo, Ontario, Canada

Fisher, N J., and Yovanovich, M M (1989) Thermal Constriction Resistance ofSphere/

Layered Flat Contacts: Theory and Experiments, J Heat Transfer, 111, May, pp 249–256.

Fletcher, L S (1972) A Review ofThermal Control Materials for Metallic Junctions, J.

Spacecr Rockets, 9(12), 849–850.

Fletcher, L S (1988) Recent Developments in Contact Conductance Heat Transfer, J Heat

Transfer, 110, 1059–1070.

Trang 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[387],(127)

Lines: 4831 to 4874

———

13.0pt PgVar

———

Normal Page PgEnds: TEX [387],(127)

Fletcher, L S (1990) A Review ofThermal Enhancement Techniques for Electronic Systems,

IEEE Trans Components Hybrids Manuf Technol., 13(4), 1012–1021.

Fuller, J J (2000) Thermal Contact Conductance ofMetal/Polymer Joints: An Analytical and Experimental Investigation, M.S thesis, Department ofMechanical Engineering, Clemson University, Clemson, SC

Fuller, J J., and Marotta, E E (2000) Thermal Contact Conductance ofMetal/Polymer Joints,

J Thermophys Heat Transfer, 14(2), 283–286.

Garnier, J E., and Begej, S (1979) Ex-reactor determination ofGap and Contact Conductance between Uranium Dioxide: Zircaloy-4 Interfaces, Report, Nuclear Regulatory Commission, Washington, DC

Gibson, R D (1976) The Contact Resistance for a Semi-infinite Cylinder in a Vacuum, J.

Appl Energy, 2, 57–65.

Gradshteyn, I S., and Ryzhik, I M (1965) Table of Integrals, Series and Products,

Springer-Verlag, New York

Greene, P R (1989) A Useful Approximation to the Error Function: Applications to Mass,

Momentum, and Energy Transport in Shear Layers, J Fluids Eng., 111, June, 224–226.

Greenwood, J A (1967) The Area ofContact between Rough Surfaces and Flats, J Lubr.

Technol., 81, 81–91.

Greenwood, J A., and Tripp, J H (1967) The Elastic Contact ofRough Spheres, J Appl.

Mech., 89(1), 153–159.

Greenwood, J A., and Tripp, J H (1970) The Contact ofTwo Nominally Flat Rough Surfaces,

Proc Inst Mech Eng., 185, 625–633.

Greenwood, J A., and Williamson, J B P (1966) Contact ofNominally Flat Surfaces, Proc.

R Soc London, A295, 300–319.

Hartnett, J P (1961) A Survey ofThermal Accommodation Coefficients, in Rarefied Gas

Dynamics, L Talbot, ed., Academic Press, New York, pp 1–28.

Hegazy, A A (1985) Thermal Joint Conductance of Conforming Rough Surfaces: Effect ofSurface Microhardness Variation, Ph.D dissertation, University ofWaterloo, Waterloo, Ontario, Canada

Hertz, H R (1896) Miscellaneous Papers, English Translation, Macmillan, London.

Holm, R (1967) Electric Contacts:Theory and Applications, Springer-Verlag, New York.

Hui, P., and Tan, H S (1994) Temperature Distributions in a Heat Dissipation System Using

a Cylindrical Diamond Heat Spreader on a Copper Sink, J Appl Phys., 75(2), 748–757.

Jeans, J (1963) The Mathematical Theory of Electricity and Magnetism, Cambridge

Univer-sity Press, Cambridge, pp 244–249

Johnson, K L (1985) Contact Mechanics, Cambridge University Press, Cambridge.

Keltner, N R (1973) Transient Heat Flow in Half-Space Due to an Isothermal Disk on the

Surface, J Heat Transfer, 95, 412–414.

Kennedy, D P (1960) Spreading Resistance in Cylindrical Semiconductor Devices, J Appl.

Phys., 31(8), 1490–1497.

Kitscha, W W (1982) Thermal Resistance ofSphere–Flat Contacts, M.A.Sc thesis, Depart-ment ofMechanical Engineering, University ofWaterloo, Waterloo, Ontario, Canada

Kitscha, W W., and Yovanovich, M M (1975) Experimental Investigation on the Overall

Thermal Resistance ofSphere–Flat Contacts, Progress in Astronautics and Aeronautics:

Trang 8

388 THERMAL SPREADING AND CONTACT RESISTANCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[388],(128)

Lines: 4874 to 4914

———

6.0pt PgVar

———

Normal Page PgEnds: TEX [388],(128)

Heat Transfer with Thermal Control Applications, Vol 39, MIT Press, Cambridge, MA,

pp 93–110

Kraus, A D., and Bar-Cohen, A (1983) Thermal Analysis and Control of Electronic

Equip-ment, McGraw-Hill, New York, pp 199–214.

Lambert, M A (1995) Thermal Contact Conductance ofSpherical Rough Surfaces, Ph.D

dissertation, Texas A&M University, College Station, TX

Lambert, M A., and Fletcher, L S (1996) A Review ofModels for Thermal Contact

Con-ductance ofMetals, AIAA 96-0239, 34th Aerospace Sciences Meeting and Exhibit, Jan.

15–18

Lambert, M A., and Fletcher, L S (1997) Thermal Contact Conductance ofSpherical Rough

Surfaces, J Heat Transfer, 119, 684–690.

Lee, S., Yovanovich, M M., Song, S., and Moran, K P (1993) Analysis ofThermal

Constric-tion Resistance in Bolted Joint, Int J Microcircuits Electron Packag., 16(2), 125–136.

Lee, S., Song, S., Au, V., and Moran, K P (1995) Constriction/Spreading Resistance Model

for Electronics Packaging, Proc ASME/JSME Thermal Engineering Conference, Vol 4,

pp 199–206

Lloyd, W R., Wilkins, D R., and Hill, P R (1973) Heat Transfer in Multicomponent

Mon-atomic Gases in the Low, Intermediate and High Pressure Regime, Proc Nuclear

Thermon-ics Conference.

Loyalka, S K (1982) A Model for Gap Conductance in Nuclear Fuel Rods, Nucl Technol.,

57, 220–227

Madhusudana, C V (1975) The Effect of Interface Fluid on Thermal Contact Conductance,

Int J Heat Mass Transfer, 18, 989–991.

Madhusudana, C V (1996) Thermal Contact Conductance, Springer-Verlag, New York.

Madhusudana, C V., and Fletcher, L S (1986) Contact Heat Transfer: The Last Decade, AIAA

J., 24(3), 510–523.

Madhusudana, C V., Peterson, G P., and Fletcher, L S (1988) Effect of Non-uniform

Pres-sures on the Thermal Conductance in Bolted and Riveted Joints, Mech Eng., 104, 57–

67

Magnus, W., Oberhettinger, F., and Soni, R P (1966) Formulas and Theorems for Special

Functions of Mathematical Physics, Springer-Verlag, New York.

Mantelli, M B H., and Yovanovich, M M (1996) Experimental Determination ofthe Overall

Thermal Resistance ofSatellite Bolted Joints, J Thermophys Heat Transfer, 10(1), 177–

179

Mantelli, M B H., and Yovanovich, M M (1998a) Parametric Heat Transfer Study of Bolted

Joints, J Thermophys Heat Transfer, 12(3), 382–390.

Mantelli, M B H., and Yovanovich, M M (1998b) Compact Analytical Model for Overall

Thermal Resistance ofBolted Joints, Int J Heat Mass Transfer, 41(10), 1255–1266.

Marotta, E E., and Fletcher, L S (1996) Thermal Contact Resistance ofSelected Polymeric

Materials, J Thermophys Heat Transfer, 10(2), 334–342.

Marotta, E E., and Fletcher, L S (2001) Thermal Contact Resistance Modeling ofNon-flat,

Roughened Surfaces with Non-metallic Coatings, J Heat Transfer, 123, 11–23.

Martin, K A., Yovanovich, M M., and Chow, Y L (1984) Method ofMoments

Formula-tion ofThermal ConstricFormula-tion Resistance ofArbitrary Contacts, AIAA-84-1745, AIAA 19th

Thermophysics Conference, Snowmass, CO, June 25–28

Trang 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[389],(129)

Lines: 4914 to 4948

———

12.0pt PgVar

———

Normal Page PgEnds: TEX [389],(129)

McGee, G R., Schankula, M H., and Yovanovich, M M (1985) Thermal Resistance of Cylinder-Flat Contacts: Theoretical Analysis and Experimental Verification ofa

Line-Contact Model, Nucl Eng Des., 86, 369–381.

McWaid, T H., and Marschall, E (1992a) Applications ofthe Modified Greenwood and

Williamson Contact Model for Prediction of Thermal Contact Resistance, Wear, 152, 263–

277

McWaid, T H., and Marschall, E (1992b) Thermal Contact Resistance across Pressed Metal

Contacts in a Vacuum Environment, Int J Heat Mass Transfer, 35, 2911–2920.

Mikic, B B (1970) Thermal Constriction Resistance Due to Nonuniform Surface Conditions:

Contact Resistance at Nonuniform Interface Pressure, Int J Heat Mass Transfer, 13, 1497–

1500

Mikic, B B (1974) Thermal Contact Conductance: Theoretical Considerations, Int J Heat

Mass Transfer, 17, 205–214.

Mikic, B B., and Rohsenow, W M (1966) Thermal Contact Resistance, Mech Eng Rep DSR

74542-41, MIT, Cambridge, MA.

Muzychka, Y S., Sridhar, M R., Yovanovich, M M., and Antonetti, V W (1999) Thermal Spreading Resistance in Multilayered Contacts: Applications in Thermal Contact

Resis-tance, J Thermophys Heat Transfer, 13(4), 489–494.

Muzychka, Y S., Culham, J R., and Yovanovich, M M (2000) Thermal Spreading Resistance

ofEccentric Heat Sources on Rectangular Flux Channels, ASME-HTD-366-4, ASME, New

York, pp 347–355

Negus, K J., and Yovanovich, M M (1984a) Constriction Resistance ofCircular Flux Tubes

with Mixed Boundary Conditions by Linear Superposition ofNeumann Solutions,

ASME-84-HT-84, ASME, New York.

Negus, K J., and Yovanovich, M M (1984b) Application ofthe Method ofOptimized Images

to Steady Three-Dimensional Conduction Problems, ASME-84-WA/HT-110, ASME, New

York

Negus, K J., and Yovanovich, M M (1988) Correlation ofGap Conductance Integral for

Conforming Rough Surfaces, J Thermophys Heat Transfer, 12, 279–281.

Negus, K J., and Yovanovich, M M (1989) Transient Temperature Rise at Surfaces Due to

Arbitrary Contacts on Half-Spaces, CSME Trans., 13(1/2), 1–9.

Negus, K J., Yovanovich, M M., and Thompson, J C (1985) Thermal Constriction Resis-tance ofCircular Contacts on Coated Surfaces: Effect ofContact Boundary Condition,

AIAA-85-1014, AIAA 20th Thermophysics Conference, Williamsburg, VA, June 19–21.

Negus, K J., Yovanovich, M M., and Beck, J V (1989) On the Nondimensionalization of

Constriction Resistance for Semi-infinite Heat Flux Tubes, J Heat Transfer, 111, Aug.,

804–807

Nelson, G J., and Sayers, W A (1992) A Comparison ofTwo-Dimensional Planar,

Axi-symmetric and Three-Dimensional Spreading Resistance, Proc 8th Annual IEEE

Semi-conductor Thermal Measurement and Management Symposium, 62–68.

Nho, K M (1989) Experimental Investigation ofHeat Flow Rate and Directional Effect on Contact Resistance ofAnisotropic Gound/Lapped Interfaces, Ph.D dissertation Depart-ment ofMechanical Engineering, University ofWaterloo, Waterloo, Ontario, Canada

Normington, E J., and Blackwell, J H (1964) Transient Heat Flow from Constant

Tempera-ture Spheroids and the Thin Circular Disk, Q J Mech Appl Math., 17, 65–72.

Trang 10

390 THERMAL SPREADING AND CONTACT RESISTANCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[390],(130)

Lines: 4948 to 4994

———

0.0pt PgVar

———

Custom Page (7.0pt) PgEnds: TEX [390],(130)

Normington, E J., and Blackwell, J H (1972) Transient Heat Flow from a Thin Circular Disk:

Small Time Solution, J Aust Math Soc., 14, 433–442.

Onions, R A., and Archard, J F (1973) The Contact ofSurfaces Having a Random Structure,

J Phys D Appl Phys., 6, 289–304.

Prasher, R S (2001) Surface Chemistry and Characteristics Based Model for the Thermal

Contact Resistance ofFluidic Interstitial Thermal Interface Materials, J Heat Transfer,

123, 969–975

Rapier, A C., Jones, T M., and McIntosh, J E (1963) The Thermal Conductance ofUranium

Dioxide/Stainless Steel Interfaces, Int J Heat Mass Transfer, 6, 397–416.

Roess, L C (1950) Theory ofSpreading Conductance, Beacon Laboratories ofTexas Com-pany, Beacon, NY, App A (unpublished report)

Savija, I., Culham, J R., Yovanovich, M M., and Marotta, E E (2002a) Review ofThermal

Conductance Models for Joints Incorporating Enhancement Materials, AIAA-2002-0494,

40th AIAA Aerospace Sciences Meeting and Exhibit, Jan 14–17, Reno, NV

Savija, I., Yovanovich, M M., Culham, J R., and Marotta, E E (2002b) Thermal Joint

Resistance Models for Conforming Rough Surfaces with Grease Filled Gaps,

AIAA-2002-0495, 40th AIAA Aerospace Sciences Meeting and Exhibit, Jan 14–17, Reno, NV.

Sayles, R S., and Thomas, T R (1976) Thermal Conductance ofa Rough Elastic Contact, J.

Appl Energy, 2, 249–267.

Schneider, G E (1978) Thermal Resistance Due to Arbitrary Dirichlet Contacts on a

Half-Space, Prog Astronaut Aeronaut Thermophys Therm Control, 65, 103–119.

Schneider, G E., Strong, A B., and Yovanovich, M M (1976) Transient Heat Flow from

a Thin Circular Disk, AIAA Progress in Astronautics, Radiative Transfer and Thermal Control, (Ed A M Smith), MIT Press, 49, 419–432

Semyonov, Yu G., Borisov, S E., and Suetin, P E (1984) Investigation ofHeat Transfer in

Rarefied Gases over a Wide Range ofKnudsen Numbers, Int J Heat Mass Transfer, 27,

1789–1799

Sexl, R U., and Burkhard, D G (1969) An Exact Solution for Thermal Conduction through

a Two-Dimensional Eccentric Constriction, Prog Astronaut Aeronaut., 21, 617–620.

Shlykov, Yu P (1965) Calculation ofThermal Contact Resistance ofMachined Metal

Sur-faces, Teploenergetika, 12(10), 79–83.

Smythe, W R (1951) The Capacitance ofa Circular Annulus, Am J Phys., 22(8), 1499–1501.

Smythe, W R (1968) Static and Dynamic Electricity, 3rd ed., McGraw-Hll, New York.

Sneddon, I N (1966) Mixed Boundary Value Problems in Potential Theory, North-Holland,

Amsterdam

Song, S (1988) Analytical and Experimental Study ofHeat Transfer through Gas Layers of Contact Interfaces, Ph.D dissertation, University of Waterloo, Waterloo, Ontario, Canada

Song, S., and Yovanovich, M M (1987) Correlation ofThermal Accommodation Coefficients

for Engineering Surfaces, ASME-HTD-69, ASME, New York, 107–116.

Song, S., and Yovanovich, M M (1988) Relative Contact Pressure: Dependence on Surface

Roughness and Vickers Microhardness, J Thermophys Heat Transfer, 2(1), 43–47.

Song, S., Yovanovich, M M., and Nho, K (1992a) Thermal Gap Conductance: Effects of Gas

Pressure and Mechanical Load, J Thermophys Heat Transfer, 6(1), 62–68.

Song, S., Park, C., Moran, K P., and Lee, S (1992b) Contact Area ofBolted Joint Interface:

Analytical, Finite Element Modeling, and Experimental Study, Comput Aid Des Electron.

Packag., 3, 73–81.

Ngày đăng: 05/07/2014, 16:20

TỪ KHÓA LIÊN QUAN