1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Class Notes in Statistics and Econometrics Part 4 pps

56 364 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chebyshev Inequality, Weak Law of Large Numbers, and Central Limit Theorem
Trường học University of Statistics and Econometrics
Chuyên ngành Statistics and Econometrics
Thể loại lecture notes
Năm xuất bản 2023
Thành phố Unknown
Định dạng
Số trang 56
Dung lượng 519,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

be a sequence of independent random variables all of whichhave the same expected value µ and variance σ2.. The empirical distribution is a discrete probability distribution defined by Pr

Trang 1

Chebyshev Inequality, Weak Law of Large

Numbers, and Central Limit Theorem

Trang 2

to.”) One does not need to know the full distribution ofyfor that, only its expectedvalue and standard deviation We will give here a proof only if y has a discretedistribution, but the inequality is valid in general Going over to the standardizedvariable z = y−µσ we have to show Pr[|z|≥k] ≤ 1

k 2 Assuming z assumes the values

z1, z2, with probabilities p(z1), p(z2), , then

i : |z i|≥k

zi2p(zi)(7.1.4)

Trang 3

2k 2, and 0 with probability 1 − k12, has expected value 0 and variance 1 and the

≤-sign in (7.1.1) becomes an equal sign

Problem 115 [HT83, p 316] Lety be the number of successes in n trials of aBernoulli experiment with success probability p Show that

n− p <ε≥ 1 − 1

4nε2.Hint: first compute what Chebyshev will tell you about the lefthand side, and thenyou will need still another inequality

Answer E[ y /n] = p and var[ y /n] = pq/n (where q = 1 − p) Chebyshev says therefore

 y

n− p

≥ k

qpq n



≤ 1

k 2 Setting ε = kppq/n, therefore 1/k 2 = pq/nε 2 one can rewerite ( 7.1.7 ) as

 y

n− p

... written as an integral (i.e.,

an infinite sum each summand of which is infinitesimal), therefore we get

Trang 24< /span>

8.3... notseparately but jointly, as a totality In order to this, we combinexandyinto oneentity, a vector



xy

Trang 13

can... variables uniformly distributed over [0, 1] Define u = min(x,y) and v =max(x,y)

• a Draw in thex,yplane the event {max(x,y) ≤ 0.5 and min(x,y) > 0 .4} andcompute its probability

Answer

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN