1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 21 docx

10 549 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 100,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Use Gauss’s forward formula to find a polynomial of degree four which takes thefollowing values of the function fx: Sol.. Use Gauss’s forward formula to find y30 for the following data..

Trang 1

Take the mean of equation (1) and (2)

f u = + + − + ∆f + − ∆ + ∆ − 

( 1) 2) ( 1) ( 1) ( 1)( 2)

( 1)

+

( 3) ( 1) ( 2) ( 2) ( 1) ( 1)( 2)

u+ u uu−  − ∆ − + + ∆ −  +

1 ( 1)

−  − 

5

1 ( 1) ( 2) ( 1 2) ( 1) ( 2)

( 1) ( 1)( 2)

( 2)

f

This formula is very useful when 1

2

u= and gives best result when 1 3

4< <u 4

4.4.5 Laplace-Everett’s Formula

Gausss forward formula is given by

( 2)( 1) ( 1)( _ 2) ( 1) ( 1)( 2)( 3)

We know

(0) (1) (0) ( 1) (0) ( 1) ( 2) ( 1) ( 2)

∆ − = ∆ − − ∆ − Therefore, using this in equation (1), we get

f u = f +u ff + − ∆ f − + + − ∆ f − ∆ f

(1 ) (0) (1) ( 1) 2 ( 1) ( 1) ( 1) 2 ( 1)

+( 1) ( 1)( 2) 4 ( 2) ( 2)( 1) ( 1)( 2) 4 ( 2)

Trang 2

(1 ) (0) (1) ( 1)(2 ) 2 ( 1) ( 1) ( 1) 2 (0)

( 1)( 1) ( 2)( 1) ( 1)( 2)

Substitute 1 – u = w in second part of equation (2)

( 1) ( 1) ( 2)( 1) ( 1)( 2)

This is called Laplace-Everett’s formula It gives better estimate value when 1

2

u>

Example 1 From the following table, find the value of e 1.17 using Gauss forward formula:

x

x

e = f x

( ) 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693 Sol The difference table is as given:

1 2.7183

0.1394

0.179 1.30 3.6693

Trang 3

Now, let taking origin at 1.15, here h = 0.05

Then, 1.17 1.15 0.4

0.05

On applying Gauss’s forward interpolation, we have

( ) (0) (0) ( 1) 2 ( 1) ( 1) ( 1) 3 ( 1) ( 1) ( 1)( 2) 4 ( 2)

f u = f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f

5 ( 2)( 1) ( 1)( 2)

( 2) 5!

f

(0.4)( 0.6) (1.4)(0.4)( 0.6)

(1.4)(0.4)( 0.6)( 1.6)(2.4)

120

(0.4) 3.1582 0.06476 0.000948 0.0000224 0.0000010752

(0.4) 3.22199 (Approx.)

Example 2 Given that

x

x

log 1.39794 1.47712 1.54407 1.60206 1.65321

log 3.7 = ?

Sol

2

1

0

1

2

25 1.39794

0.07918

0.05115

45 1.65321

x

x

x

x

x

x = a + hu, x = 37, a = 35, h = 5

37 35

0.4

x a− = − =

Trang 4

2 3 4

1.54407 0.4 0.05798 (0.4)(0.4 1) ( 0.00896) (0.4)(0.4 1)(0.4 1) (0.00212)

(0.4)(0.4 1)(0.4 1)(0.4 2)

( 0.00115) 24

( ) 1.54407 0.023192 0.0010752 0.00011872 0.00002576

Since log 3.7 = log3.7 10 log37

⇒ log 3.7 = log 37 – log 10 = 1.56819272 – 1 = 0.56819272 Ans

Example 3 From the following table find y when x = 1.45.

x

Sol

0.112

1.008

u u u

f u = f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f

u=1.45 1.40.2− =0.25

(0.25)( 0.75) (0.25)( 0.75)(1.25)

= 0.047875

Trang 5

Example 4 Use Gauss’s forward formula to find a polynomial of degree four which takes the

following values of the function f(x):

Sol Taking center at 3 i.e., x0 = 3 and h = 1

h

Now, for the given data difference table becomes:

2

2

Gauss forward formula is

f u = f + ∆u f + − ∆ f − + + − ∆ f − + + − − ∆ f

=1 2 6 2 2 14 24 4 3 12 2 104 32 2 4 28 3 142 2 308 80

Example 5 Use Gauss’s forward formula to find y30 for the following data.

18.4708 17.8144 17.1070 16.3432 15.5154 Sol Let us take the origin at x = 29

30 29 1

0.25

Trang 6

Now, for the given data difference table is:

21 18.4708

0.6564

0.8278

37 15.5154

Putting these values in Gauss forward interpolation formula, we have

0.25

(0.25)( 0.750) 17.1070 (0.25) ( 0.7638) ( 0.0564)

2

+ (0.25)( 0.750)(1.25) ( 0.0076) (1.25)(0.25)( 0.750)( 1.75) ( 0.0022)

y0.25 = 17.1070 – 0.19095 + 0.0052875 + 0.00002968 – 0.00000375

y0.25 = 16.9216 Ans

PROBLEM SET 4.3

1 The values of e –x at x = 1.72 to x = 1.76 are given in the following table:

( )

0.17907 0.17728 0.17552 0.17377 0.17204

x

f x

Find the values of e–1.7425 using Gauss forward difference formula

[Ans 0.1750816846]

2 Apply Gauss’s forward formula to find the value of f(x) at x = 3.75 from the table:

( )

24.145 22.043 20.225 18.644 17.262 16.047

x

f x

[Ans 19.407426]

3 Apply Central difference formula to obtain f(32) Given that :

f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794. [Ans 0.316536]

4 Apply Gauss forward formula to find the value of U9, if

Trang 7

5 Apply Gauss forward formula to find a polynomial of degree three which takes the values

of y as given on next page:

x

3

6 x 2x 3x

6 Use Gauss’s forward formula to find the annuity value for 27 years from the following data:

10.3797 12.4622 14.0939 15.3725 16.3742 17.1591

Year

Annuity

[Ans 14.643]

7 Use Gauss’s forward formula to find the value of f(x), when 1,

2

x= given that:

( )

x

f x

GAUSS BACKWARD

Example 1 Given that

tan 1.1918 1.2349 1.2799 1.3270 1.3764

x

x

°

°

Using Gauss’s backward formula, find the value of tan 51° 42

Sol Take the origin at 52° and given h = 1

h

Now using Gauss backward formula

f(u) = f(0) + uf (–1) + ( 1) 2 ( )

1 2!

f

+

( 1) ( 1) 3 ( ) ( 2)( 1) ( 1)

2

f

Trang 8

Difference table for given data is:

50 1.1918

0.0431

0.0494

54 1.3764

From equation (1)

f(–0.3 °) = 1.2799 + (–0.3) (0.045) + ( 0.3 0.7)( ) ( 0.3 0.7 1.7) ( ) ( )

= 1.2799 – 0.0135 – 0.0002205 – 0.0000119

= 1.266167 (Approx.)

Example 2 Apply Gauss backward formula to find sin 45 ° from the following table

Sin

θ°

θ°

0.34202 0.502 0.64279 0.76604 0.86603 0.93969 0.98481 Sol Difference table for given data is:

20 0.34202

0.15998

70 0.93

sinθ°

0.04512

80 0.98481

Trang 9

u = x a

h

− = 45 40 10

− = 5

10 = 0.5 Now using Gauss backward formula

f(u) = f(0) + uf (–1) + ( 1)

2!

u+ u ∆2f( )−1 + ( 1) ( 1)

3!

u+ u u

( )

3f 2

+ ( 2)( 1) ( 1)

4!

u+ u+ u u

( )

4f 2

∆ − + ( 2)( 1) ( 1)( 2)

5!

u+ u+ u uu

( )

5f 2

f(0.5) = 0.64279 + 0.5 × 0.14079 + 0.5 1.5

2

×

× (–0.01754) + 0.5 1.5( 0.5)

6

× (0.00165)

+ 0.5 1.5( 0.5 2.5)( )

24

× (–0.00737)

= 0.64279 + 0.070395 – 0.0065775 – 0.000103125 + 0.00028789

= 0.706792 Ans

Example 3 Apply Gauss backward formula to find the value of (1.06) 19 if

(1 06) 10 = 1.79085, (1.06) 15 = 2.39656, (1 06) 20 = 3.20714, (1.06) 25 = 4.29187, (1.06) 30 = 5.74349

Sol The difference table is given by

10 1.79085

0.60571

1.45162

30 5.74349

h

= 19 20 5

= – 0.2 From Gauss backward formula

f(u) = f(0) + uf (–1) + ( 1)

2!

u+ u

( )

2f 1

∆ − + ( 1) ( 1)

3!

u+ u u

( )

3f 2

+ ( 2)( 1) ( 1)

4!

u+ u+ u u

∆4f( )−2 +

f(u) = 3.20714 – 0.2 × 0.81058 – 0.2 0.8( )

2 × 0.27415 – 0.2 0.8( )( 1.2)

6

0.06928 + 0.2 0.8( ) (−1.2 1.8) ( )

× 0.02346

Trang 10

f(u) = 3.20714 – 0.162116 – 0.021932 + 0.002216 + 0.00033782

= 3.0256458 (Approx.)

Example 4 Using Gauss backward formula, Estimate the no of persons earning wages between Rs.

60 and Rs 70 from the following data:

( )

No of Persons in thousands

Sol Difference table for the given data is as:

120

50

u = x a

h

− = 70 80 20

− = 10 20

− = – 0.5 From Gauss backward formula

4 ( 2)( 1) ( 1)

( 2) 4!

f

= 470 ( 0.5) ( 100) ( 0.5)(0.5) ( 30) ( 0.5)(0.5)( 1.5) ( 10)

+ ( 0.5)(0.5)( 1.5)(1.5) (20)

24

= 470 50 3.75 0.625 0.46875− + − +

= 423.59375

Hence No of Persons earning wages between Rs 60 to 70 is 423.59375 – 370 = 53.59375 or

54000 (Approx.)

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w