the BY variables NAME, a character variable that contains the name of endogenous dependent variables SIGMA_i, numeric variables that contain the estimate of the innovation covariance m
Trang 12182 F Chapter 32: The VARMAX Procedure
Consider the following example:
proc varmax data=simul2 outest=est;
model y1 y2 / p=2 noint
ecm=(rank=1 normalize=y1) noprint;
run;
proc print data=est;
run;
The output inFigure 32.67shows the results of the OUTEST= data set
Figure 32.67 OUTEST= Data Set
Obs NAME TYPE AR1_1 AR1_2 AR2_1 AR2_2
1 y1 EST -0.46680 0.91295 -0.74332 -0.74621
2 STD 0.04786 0.09359 0.04526 0.04769
3 y2 EST 0.10667 -0.20862 0.40493 -0.57157
4 STD 0.05146 0.10064 0.04867 0.05128
OUTHT= Data Set
The OUTHT= data set contains prediction of the fitted GARCH model produced by the GARCH statement The following output variables can be created
the BY variables
Hi_j , numeric variables that contain the prediction of covariance, where 1 i < j k, where k is the number of dependent variables
The OUTHT= data set contains the values shown inTable 32.6for a bivariate case
Table 32.6 OUTHT= Data Set
Obs H1_1 H1_2 H2_2
1 h111 h121 h221
2 h112 h122 h222
Consider the following example of the OUTHT= option:
proc varmax data=garch;
model y1 y2 / p=1
print=(roots estimates diagnose);
Trang 2garch q=1 outht=ht;
run;
proc print data=ht(firstobs=495);
run;
The output inFigure 32.68shows the part of the OUTHT= data set
Figure 32.68 OUTHT= Data Set
Obs h1_1 h1_2 h2_2
495 9.36568 -1.10406 2.44644
496 8.46807 -0.17464 1.60330
497 9.19686 0.09762 1.69639
498 8.40787 -0.33463 2.07687
499 8.88429 0.03646 1.69401
500 8.60844 -0.40260 1.79703
OUTSTAT= Data Set
The OUTSTAT= data set contains estimation results of the fitted model produced by the VARMAX statement The following output variables can be created The subindex i is 1; : : : ; k, where k is the number of endogenous variables
the BY variables
NAME, a character variable that contains the name of endogenous (dependent) variables
SIGMA_i, numeric variables that contain the estimate of the innovation covariance matrix
AICC, a numeric variable that contains the corrected Akaike’s information criterion value
HQC, a numeric variable that contains the Hannan-Quinn’s information criterion value
AIC, a numeric variable that contains the Akaike’s information criterion value
SBC, a numeric variable that contains the Schwarz Bayesian’s information criterion value
FPEC, a numeric variable that contains the final prediction error criterion value
FValue, a numeric variable that contains the F statistics
PValue, a numeric variable that contains p-value for the F statistics
If the JOHANSEN= option is specified, the following items are added:
Eigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1
Trang 32184 F Chapter 32: The VARMAX Procedure
RestrictedEigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1 when the NOINT option is not specified
Beta_i, numeric variables that contain long-run effect parameter estimates, ˇ
Alpha_i, numeric variables that contain adjustment parameter estimates, ˛
If the JOHANSEN=(IORDER=2) option is specified, the following items are added:
EValueI2_i, numeric variables that contain eigenvalues for the cointegration rank test of integrated order 2
EValueI1, a numeric variable that contains eigenvalues for the cointegration rank test of integrated order 1
Eta_i, numeric variables that contain the parameter estimates in integrated order 2,
Xi_i, numeric variables that contain the parameter estimates in integrated order 2,
The OUTSTAT= data set contains the values shownTable 32.7for a bivariate case
Table 32.7 OUTSTAT= Data Set
Obs NAME SIGMA_1 SIGMA_2 AICC RSquare FValue PValue
Obs EValueI2_1 EValueI2_2 EValueI1 Beta_1 Beta_2
Obs Alpha_1 Alpha_2 Eta_1 Eta_2 Xi_1 Xi_2
Consider the following example:
proc varmax data=simul2 outstat=stat;
model y1 y2 / p=2 noint
cointtest=(johansen=(iorder=2)) ecm=(rank=1 normalize=y1)
noprint;
run;
proc print data=stat;
run;
The output inFigure 32.69shows the results of the OUTSTAT= data set
Trang 4Figure 32.69 OUTSTAT= Data Set
Obs NAME SIGMA_1 SIGMA_2 AICC HQC AIC SBC FPEC
1 y1 94.7557 4.527 9.37221 9.43236 9.36834 9.52661 11712.14
EValue EValue EValue Obs RSquare FValue PValue I2_1 I2_2 I1 Beta_1 Beta_2
1 0.93900 482.308 6.1637E-57 0.98486 0.95079 0.50864 1.00000 1.00000
2 0.93912 483.334 5.6124E-57 0.81451 0.01108 -1.95575 -1.33622
Obs Alpha_1 Alpha_2 Eta_1 Eta_2 Xi_1 Xi_2
1 -0.46680 0.007937 -0.012307 0.027030 54.1606 -52.3144
2 0.10667 0.033530 0.015555 0.023086 -79.4240 -18.3308
Printed Output
The default printed output produced by the VARMAX procedure is described in the following list:
descriptive statistics, which include the number of observations used, the names of the variables, their means and standard deviations (STD), their minimums and maximums, the differencing operations used, and the labels of the variables
a type of model to fit the data and an estimation method
a table of parameter estimates that shows the following for each parameter: the variable name for the left-hand side of equation, the parameter name, the parameter estimate, the approximate standard error, t value, the approximate probability (P r >jtj), and the variable name for the right-hand side of equations in terms of each parameter
the innovation covariance matrix
the information criteria
If PRINT=ESTIMATES is specified, the VARMAX procedure prints the following list with the default printed output:
the estimates of the constant vector (or seasonal constant matrix), the trend vector, the coef-ficient matrices of the distributed lags, the AR coefcoef-ficient matrices, and the MA coefcoef-ficient matrices
the ALPHA and BETA parameter estimates for the error correction model
the schematic representation of parameter estimates
Trang 52186 F Chapter 32: The VARMAX Procedure
If PRINT=DIAGNOSE is specified, the VARMAX procedure prints the following list with the default printed output:
the cross-covariance and cross-correlation matrices of the residuals
the tables of test statistics for the hypothesis that the residuals of the model are white noise: – Durbin-Watson (DW) statistics
– F test for autoregressive conditional heteroscedastic (ARCH) disturbances
– F test for AR disturbance
– Jarque-Bera normality test
– Portmanteau test
ODS Table Names
The VARMAX procedure assigns a name to each table it creates You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets These names are listed in the following table:
Table 32.8 ODS Tables Produced in the VARMAX Procedure
ODS Tables Created by the MODEL Statement
AccumImpulse Accumulated impulse response matrices IMPULSE=(ACCUM)
IMPULSE=(ALL) AccumImpulsebyVar Accumulated impulse response by
vari-able
IMPULSE=(ACCUM) IMPULSE=(ALL) AccumImpulseX Accumulated transfer function matrices IMPULSX=(ACCUM)
IMPULSX=(ALL) AccumImpulseXbyVar Accumulated transfer function by
vari-able
IMPULSX=(ACCUM) IMPULSX=(ALL)
AlphaInECM ˛ coefficients when rank=r ECM=
AlphaOnDrift ˛ coefficients under the restriction of a
deterministic term
JOHANSEN=
AlphaBetaInECM …D ˛ˇ0coefficients when rank=r ECM=
ANOVA Univariate model diagnostic checks for
the residuals
PRINT=DIAGNOSE
ARRoots Roots of AR characteristic polynomial ROOTS with P=
BetaInECM ˇ coefficients when rank=r ECM=
BetaOnDrift ˇ coefficients under the restriction of a
deterministic term
JOHANSEN=
Trang 6Table 32.8 continued
CorrB Correlations of parameter estimates CORRB
CorrResiduals Correlations of residuals PRINT=DIAGNOSE
CorrResidualsbyVar Correlations of residuals by variable PRINT=DIAGNOSE
CorrResidualsGraph Schematic representation of correlations
of residuals
PRINT=DIAGNOSE
CorrXGraph Schematic representation of sample
cor-relations of independent series
CORRX
CorrYGraph Schematic representation of sample
cor-relations of dependent series
CORRY CorrXLags Correlations of independent series CORRX
CorrXbyVar Correlations of independent series by
variable
CORRX CorrYLags Correlations of dependent series CORRY
CorrYbyVar Correlations of dependent series by
vari-able
CORRY
CovB Covariances of parameter estimates COVB
CovInnovation Covariances of the innovations default
CovPredictError Covariance matrices of the prediction
er-ror
COVPE CovPredictErrorbyVar Covariances of the prediction error by
variable
COVPE
CovResiduals Covariances of residuals PRINT=DIAGNOSE
CovResidualsbyVar Covariances of residuals by variable PRINT=DIAGNOSE
CovXLags Covariances of independent series COVX
CovXbyVar Covariances of independent series by
variable
COVX
CovYLags Covariances of dependent series COVY
CovYbyVar Covariances of dependent series by
vari-able
COVY
DecomposeCov-
Pre-dictError
Decomposition of the prediction error co-variances
DECOMPOSE DecomposeCov-
Pre-dictErrorbyVar
Decomposition of the prediction error co-variances by variable
DECOMPOSE
DiagnostAR Test the AR disturbance for the residuals PRINT=DIAGNOSE
DiagnostWN Test the ARCH disturbance and
normal-ity for the residuals
PRINT=DIAGNOSE DynamicARCoef AR coefficients of the dynamic model DYNAMIC
DynamicConstant Constant estimates of the dynamic model DYNAMIC
DynamicCov-
Inno-vation
Covariances of the innovations of the dy-namic model
DYNAMIC
DynamicLinearTrend Linear trend estimates of the dynamic
model
DYNAMIC DynamicMACoef MA coefficients of the dynamic model DYNAMIC
Trang 72188 F Chapter 32: The VARMAX Procedure
Table 32.8 continued
DynamicSConstant Seasonal constant estimates of the
dy-namic model
DYNAMIC
DynamicParameter-Estimates
Parameter estimates table of the dynamic model
DYNAMIC
DynamicParameter-Graph
Schematic representation of the parame-ters of the dynamic model
DYNAMIC
DynamicQuadTrend Quadratic trend estimates of the dynamic
model
DYNAMIC
DynamicSeasonGraph Schematic representation of the seasonal
dummies of the dynamic model
DYNAMIC DynamicXLagCoef Dependent coefficients of the dynamic
model
DYNAMIC
Hypothesis Hypothesis of different deterministic
terms in cointegration rank test
JOHANSEN=
HypothesisTest Test hypothesis of different deterministic
terms in cointegration rank test
JOHANSEN=
EigenvalueI2 Eigenvalues in integrated order 2 JOHANSEN=
(IORDER=2)
(IORDER=2) InfiniteARRepresent Infinite order ar representation IARR
InfoCriteria Information criteria default
MARoots Roots of MA characteristic polynomial ROOTS with Q= MaxTest Cointegration rank test using the
maxi-mum eigenvalue
JOHANSEN=
(TYPE=MAX)
OrthoImpulse Orthogonalized impulse response
matri-ces
IMPULSE=(ORTH) IM-PULSE=(ALL)
OrthoImpulsebyVar Orthogonalized impulse response by
vari-able
IMPULSE=(ORTH) IM-PULSE=(ALL)
ParameterEstimates Parameter estimates table default
ParameterGraph Schematic representation of the
parame-ters
PRINT=ESTIMATES
PartialAR Partial autoregression matrices PARCOEF
PartialARGraph Schematic representation of partial
au-toregression
PARCOEF
PartialCanCorr Partial canonical correlation analysis PCANCORR
PartialCorr Partial cross-correlation matrices PCORR
PartialCorrbyVar Partial cross-correlations by variable PCORR
PartialCorrGraph Schematic representation of partial
cross-correlations
PCORR
Trang 8Table 32.8 continued
PortmanteauTest Chi-square test table for residual
cross-correlations
PRINT=DIAGNOSE
ProportionCov-
Pre-dictError
Proportions of prediction error covari-ance decomposition
DECOMPOSE ProportionCov-
Pre-dictErrorbyVar
Proportions of prediction error covari-ance decomposition by variable
DECOMPOSE
RankTestI2 Cointegration rank test in integrated order
2
JOHANSEN=
(IORDER=2) RestrictMaxTest Cointegration rank test using the
maxi-mum eigenvalue under the restriction of
a deterministic term
JOHANSEN=
(TYPE=MAX) without NOINT RestrictTraceTest Cointegration rank test using the trace
under the restriction of a deterministic term
JOHANSEN=
(TYPE=TRACE) without NOINT QuadTrend Quadratic trend estimates TREND=QUAD
SeasonGraph Schematic representation of the seasonal
dummies
PRINT=ESTIMATES SConstant Seasonal constant estimates NSEASON=
SimpleImpulse Impulse response matrices IMPULSE=(SIMPLE)
IMPULSE=(ALL) SimpleImpulsebyVar Impulse response by variable IMPULSE=(SIMPLE)
IMPULSE=(ALL) SimpleImpulseX Impulse response matrices of transfer
function
IMPULSX=(SIMPLE) IMPULSX=(ALL) SimpleImpulseXbyVar Impulse response of transfer function by
variable
IMPULSX=(SIMPLE) IMPULSX=(ALL) Summary Simple summary statistics default
TraceTest Cointegration rank test using the trace JOHANSEN=
(TYPE=TRACE)
(IORDER=2)
ODS Tables Created by the GARCH Statement
GARCHConstant GARCH constant estimates PRINT=ESTIMATES
GARCHParameter-Estimates
GARCH parameter estimates table default
GARCHParameter-Graph
Schematic representation of the garch pa-rameters
PRINT=ESTIMATES
Trang 92190 F Chapter 32: The VARMAX Procedure
Table 32.8 continued
GARCHRoots Roots of GARCH characteristic
polyno-mial
ROOTS
ODS Tables Created by the COINTEG Statement or the ECM option
AlphaInECM ˛ coefficients when rank=r PRINT=ESTIMATES AlphaBetaInECM …D ˛ˇ0coefficients when rank=r PRINT=ESTIMATES AlphaOnAlpha ˛ coefficients under the restriction of ˛ J=
AlphaOnBeta ˛ coefficients under the restriction of ˇ H=
AlphaTestResults Hypothesis testing of ˇ J=
BetaInECM ˇ coefficients when rank=r PRINT=ESTIMATES BetaOnBeta ˇ coefficients under the restriction of ˇ H=
BetaOnAlpha ˇ coefficients under the restriction of ˛ J=
BetaTestResults Hypothesis testing of ˇ H=
GrangerRepresent Coefficient of Granger representation PRINT=ESTIMATES
WeakExogeneity Testing weak exogeneity of each
depen-dent variable with respect to BETA
EXOGENEITY
ODS Tables Created by the CAUSAL Statement
CausalityTest Granger causality test default
GroupVars Two groups of variables default
ODS Tables Created by the RESTRICT Statement
ODS Tables Created by the TEST Statement
ODS Tables Created by the OUTPUT Statement
Note that the ODS table names suffixed by “byVar” can be obtained with the PRINT-FORM=UNIVARIATE option
Trang 10ODS Graphics
This section describes the use of ODS for creating statistical graphs with the VARMAX procedure
To request these graphs, you must specify the ODS GRAPHICS ON statement
When ODS GRAPHICS are in effect, the VARMAX procedure produces a variety of plots for each dependent variable
The plots available are as follows:
The procedure displays the following plots for each dependent variable in the MODEL statement with the PLOT= option in the VARMAX statement:
– impulse response function
– impulse response of the transfer function
– time series and predicted series
– prediction errors
– distribution of the prediction errors
– normal quantile of the prediction errors
– ACF of the prediction errors
– PACF of the prediction errors
– IACF of the prediction errors
– log scaled white noise test of the prediction errors
The procedure displays forecast plots for each dependent variable in the OUTPUT statement with the PLOT= option in the VARMAX statement
ODS Graph Names
The VARMAX procedure assigns a name to each graph it creates by using ODS You can use these names to reference the graphs when using ODS The names are listed inTable 32.9
Table 32.9 ODS Graphics Produced in the VARMAX Procedure
ErrorACFPlot Autocorrelation function of prediction
er-rors
MODEL
ErrorIACFPlot Inverse autocorrelation function of
pre-diction errors
MODEL
ErrorPACFPlot Partial autocorrelation function of
predic-tion errors
MODEL ErrorDiagnosticsPanel Diagnostics of prediction errors MODEL
ErrorNormalityPanel Histogram and Q-Q plot of prediction
er-rors
MODEL