1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of mathematics for engineers and scienteists part 174 pptx

7 248 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 307,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tables of Fourier Sine Transforms T3.4.1.

Trang 1

T3.3.4 Expressions with Hyperbolic Functions



0 f(x) cos(ux) dx

2πa–1u

cosh2(ax), a>0 2a2sinhπu1

2πa–1u

3 cosh(ax)

b

cos 1

2πab–1

cosh 12πb–1u

cos πab– 1

+ cosh πb– 1u



cosh(ax) + cos b

πsinh a–1bu

a sin b sinh πa– 1u

5 exp –ax2

2

π

a expb2– u2

4a



cosabu

2



2

4a2cosh2 12πa– 1u

7 sinh(ax)

2b

sin πab–1

cos πab– 1

+ cosh πb– 1u

coth 14πa–1u 

T3.3.5 Expressions with Logarithmic Functions



0 f(x) cos(ux) dx

1

ln x if 0< x <1,

1

u Si(u)

2 ln x √

x

– 2π u



ln(4u) + C + π2,

C =0.5772 . is the Euler constant

3 x ν–1ln x, 0< ν <1 Γ(ν) cos 2 uν

*

ψ(ν) – π2tan

πν

2



– ln u

+

4 lna + x

a – x



u



cos(au) Si(au) – sin(au) Ci(au)

5 ln 1+ a2/x2

u 1– eau

6 lna2+ x2

b2+ x2, a, b >0 π u ebu – eau

7 eax ln x, a>0 – aC+12a ln(u2+ a2) + u arctan(u/a)

u2+ a2

8 ln 1+ eax

2usinh πa– 1u

9 ln 1– eax

u2 – π

2ucoth πa–1u

Trang 2

1180 INTEGRALTRANSFORMS

T3.3.6 Expressions with Trigonometric Functions



0 f(x) cos(ux) dx

1 sin(ax)

x , a>0

1

2π if u < a,

1

4π if u = a,

0 if u > a

2 x ν–1sin(ax), a>0, |ν|<1 π (u + a)ν–|u + a|–ν sign(u – a)

4Γ(1– ν) cos 12πν

3 x sin(ax)

x2+ b2 , a, b >0

1

2πeab cosh(bu) if u < a,

–12πebu sinh(ab) if u > a

x(x2+ b2), a, b >0

1

2πb–2



1– eab cosh(bu)

if u < a,

1

2πb–2ebu sinh(ab) if u > a

5 ebx sin(ax), a, b >0 12*(a + u) a + u2+ b2 + a – u

(a – u)2+ b2

+

4ln1–4a2

u2





x2 sin2(ax), a>0 14π(2a – u) if u <2a,

xsin

a

x



xsina √

x

sin b √

x

u sin

ab

2u



sin

a2+ b2

4uπ4



10 sin ax2

a

*

cos

u2

4a



– sin

u2

4a

+

11 exp –ax2

sin bx2

, a>0

√ π (A2+ B2)1/4 exp



2

A2+ B2



sin



ϕBu

2

A2+ B2



,

A=4a, B =4b, ϕ = 12arctan(b/a)

12 1– cos(ax)

2ln1– a2

u2





13 1– cos(ax)

x2 , a>0 12π(a – u) if u < a,

14 x ν–1cos(ax), a>0, 0< ν <1 1

2Γ(ν) cos 1

2πν



|u – a|–ν + (u + a)ν

15 cos(ax)

x2+ b2 , a, b >0

1

2πb–1eab cosh(bu) if u < a,

1

2πb–1ebu cosh(ab) if u > a

16 ebx cos(ax), a, b >0 b2*(a + u)12+ b2 + 1

(a – u)2+ b2

+

xcos a √

u sin

a2

4u +π4



xcos a √

x

cos b √

u cos

ab

2u



sin

a2+ b2

4u + π4



19 exp –bx2

b exp



a

2+ u2

4b



cosh

au

2b



20 cos ax2

a



cos 14a–1u2

+ sin 14a–1u2 

21 exp –ax2

cos bx2

, a>0

√ π (A2+ B2)1/4 exp



2

A2+ B2



cos

ϕBu

2

A2+ B2



,

A=4a, B =4b, ϕ = 12arctan(b/a)

Trang 3

T3.3.7 Expressions with Special Functions



0 f(x) cos(ux) dx

uarctan

u

a





0 if 0< u < a,

–2π u if a < u

2ulnu + a

u – a



, ua

4 J0(ax), a>0



(a2– u2)–1/2 if 0< u < a,

5 J ν (ax), a>0, ν > –1

cos

ν arcsin(u/a)

a2– u2 if 0< u < a,

a

ν sin(πν/2)

ξ(u + ξ) ν if a < u,

where ξ=

u2– a2

x J ν (ax), a>0, ν >0

ν–1cos

ν arcsin(u/a)

if 0< u < a,

a ν cos(πν/2)

ν u+

u2– a2 ν if a < u

7 xν J ν (ax), a>0, ν > –12

π a2– u2 ν–1/2

(2a) νΓν+12 if 0< u < a,

ν+1J

ν (ax),

a>0, –1< ν < –12

2ν+1

π a ν u

Γ –ν –12

(u2– a2 ν+3/2 if a < u

9 J0 a √

x

usin

a2

4u



x J1 a

x

asin2

a2

8u



11 x ν/2J ν a √

x

, a >0, –1< ν < 12 a

2

ν

uν–1sin

a2

4uπν

2



12 J0 a √

x2+ b2

cos b √

a2– u2

a2– u2 if 0< u < a,

13 Y0(ax), a>0



0 if 0< u < a, –(u2– a2)–1/2 if a < u

14 x ν Y ν (ax), a>0, |ν|< 12

– (2a) ν √

π

Γ 1

2 – ν

(u2– a2 ν+1/2 if a < u

15 K0 a √

x2+ b2

, a, b >0 2√ π

u2+ a2 exp –b

u2+ a2

Trang 4

1182 INTEGRALTRANSFORMS

T3.4 Tables of Fourier Sine Transforms

T3.4.1 General Formulas



0 f(x) sin(ux) dx

1 af1(x) + bf2(x) a ˇ f1 s(u) + b ˇf2 s(u)

a fsˇu

a



3 x2n (x), n=1,2, (–1)n d

2n

du2n fs(u)ˇ

4 x2n+1f(ax), n=0,1, (–1)n+1 d

2n+1

du2n+1fc(u), ˇˇ fc(u) =



0

f(x) cos(xu) dx

5 f(ax) cos(bx), a, b >0 1

2a

*

ˇ

fs

u + b

a



+ ˇfs

u – b

a

+

T3.4.2 Expressions with Power-Law Functions



0 f(x) sin(ux) dx

1

1 if 0< x < a,

0 if a < x

1

u



1– cos(au)

2



x if 0< x <1,

2– x if 1< x <2,

0 if 2< x

4

u2 sin u sin2 u2

x

π

2

a2+ x2, a>0 π2eau

x(a2+ x2), a>0 2π

a2 1– eau

a2+ (x – b)2 –

a

au sin(bu)

a2+ (x + b)2 –

x – b

au cos(bu)

9 (x2+ a x 2)n, a>0, n =1,2, πueau

22n–2(n –1)! a2n–3

n–2



k=0

(2n – k –4)!

k! (n – k –2)!(2au) k

10

x2m+1

(x2+ a) n+1,

n, m =0,1, ;0 ≤mn

(–1)n+m2π n!

∂a n a

m eu √ a

x

π

2u

x √

x

2πu

Trang 5

No Original function, f (x) Sine transform, ˇfs(u) =



0 f(x) sin(ux) dx

14 a2+ x2– a

1/2

a2+ x2

π

2u e

au

Γ(1– ν)u ν–1

T3.4.3 Expressions with Exponential Functions



0 f(x) sin(ux) dx

a2+ u2

2 x n eax, a>0, n =1,2, n! a

a2+ u2

n+1[n/2 ]

k=0

(–1)k C n+2k+11

u

a

2k+1

x e

a

2 (a2+ u2)–3/4sin

3

2arctan

u a



x e

2

a2+ u2– a)1/2

a2+ u2

x √

x e

ax, a>0 2π a2+ u2– a)1/2

7 x n–1/2eax, a>0, n =1,2, (–1)n π2

∂a n

a2+ u2– a 1/2

a2+ u2

#

8 x ν–1eax, a>0, ν > –1 Γ(ν)(a2+ u2)–ν/2sin



νarctanu

a



9 x–2 eax – ebx

, a, b >0 u

2 ln

u2+ b2

u2+ a2



+ b arctanu

b



– a arctanu

a



e ax+1, a>0

1

2uπ

2a sinh(πu/a)

e ax–1, a>0

π

2a cothπu

a



– 1

2u

12 e x/2

1

2tanh(πu)

4a3/2 uexp



u

2

4a



2erf

 u

2√ a



xexp

a

x

2u e

2au

cos 2au

+ sin 2au 

x √

xexp



a

x



π

a e

2ausin 2au

Trang 6

1184 INTEGRALTRANSFORMS

T3.4.4 Expressions with Hyperbolic Functions



0 f(x) sin(ux) dx

a tanh 12πa–1u

4a2cosh2 12πa– 1u

x e

bx sinh(ax), b>|a| 1

2arctan

 2au

u2+ b2– a2



sinh 12πa–1u 

5 1– tanh 12ax

asinh πa– 1u

6 coth 12ax

a coth πa–1u

– 1

u

7 cosh(ax)

2b

sinh πb–1u

cos πab– 1

+ cosh πb– 1u

8 sinh(ax)

b

sin 12πab–1

sinh 12πb–1u

cos πab– 1

+ cosh πb– 1u

T3.4.5 Expressions with Logarithmic Functions



0 f(x) sin(ux) dx

1 ln x if 0< x <1,

0 if 1< x

1

u



Ci(u) – ln u – C,

C =0.5772 . is the Euler constant

3 ln x √

2u



ln(4u) + C – π2

ν

ψ(ν) + π2 cot πν2

– ln u

2Γ(1– ν) cos πν2

5 lna + x

a – x



u sin(au)

6 ln(x + b)

2+ a2 (x – b)2+ a2, a, b >0 2π

u e

au sin(bu)

7 eax ln x, a>0 a arctan(u/a) – 12u ln(u2+ a2) – e C u

u2+ a2

xln 1+ a2x2



u

a



Trang 7

T3.4.6 Expressions with Trigonometric Functions



0 f(x) sin(ux) dx

1 sin(ax)

2lnu + a

u – a





2 sin(ax)

x2 , a>0

1

2πu if 0< u < a,

1

2πa if u > a

3 x ν–1sin(ax), a>0, –2< ν <1 π |u – a|–ν–|u + a|–ν

4Γ(1– ν) sin 12πν , ν≠ 0

4 sin(ax)

x2+ b2, a, b >0

1

2πb–1eab sinh(bu) if 0< u < a,

1

2πb–1ebu sinh(ab) if u > a

1– x2



sin u if 0< u < π,

0 if u > π



1

a2+ (b – u)2 –

1

a2+ (b + u)2



7 x–1eax sin(bx), a>0 14ln(u + b)

2+ a2 (u – b)2+ a2

xsin2(ax), a>0

1

4π if 0< u <2a,

1

8π if u =2a,

0 if u >2a

4(u +2a) ln|u+2a|+14(u –2a) ln|u–2a|–12u ln u

10 exp –ax2

a exp



u

2+ b2

4a



sinh

bu

2a



x sin(ax) sin(bx), ab>0

0

if 0< u < a – b,

π

4 if a – b < u < a + b,

0 if a + b < u

a

x



√ a

2√ u J1 2√ au

xsina

x



8u



sin 2√ au

– cos 2√ au

+ exp –2√ au 

x

sin a √

x

8u–3/2exp



a

2

2u



15 cos(ax)

x , a>0

0 if 0< u < a,

1

4π if u = a,

1

2π if a < u

16 x ν–1cos(ax), a>0, |ν|<1 π(u + a)

ν – sign(u – a)|u – a|–ν

4Γ(1– ν) cos 12πν

17 x cos(ax)

x2+ b2 , a, b >0



–12πeab sinh(bu) if u < a,

1

2πebu cosh(ab) if u > a

18 1– cos(ax)

2 lnu2– a2

u2



 + a2lnu + a

u – a





xcos a √

u cos

a2

4u+ π4



xcos a √

x

cos b √

x

, a, b >0 π

ucos

ab

2u



cos

a2+ b2

4u + π4



Ngày đăng: 02/07/2014, 13:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm