1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo hóa học: " Research Article A Multiple Hilbert-Type Integral Inequality with the Best Constant Factor" doc

14 147 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 534,85 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the ori

Trang 1

Volume 2007, Article ID 71049, 14 pages

doi:10.1155/2007/71049

Research Article

A Multiple Hilbert-Type Integral Inequality with

the Best Constant Factor

Baoju Sun

Received 9 February 2007; Accepted 29 April 2007

Recommended by Eugene H Dshalalow

By introducing the norm  x  α (x ∈ R) and two parametersα, λ, we give a multiple

Hilbert-type integral inequality with a best possible constant factor Also its equivalent form is considered

Copyright © 2007 Baoju Sun This is an open access article distributed under the Cre-ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

Ifp > 1, 1/ p + 1/q =1, f , g ≥0, satisfy 0<

0 f p(t)dt < ∞and 0<

0 g q(t)dt < ∞, then the well-known Hardy-Hilbert’s integral inequality is given by (see [1,2])



0

f (x)g(y)

x + y dx d y <

π

sin(π/ p)



0 f p(t)dt

 1/ p

0 g q(t)dt

 1/q

where the constant factorπ/ sin(π/ p) is the best possible Its equivalent form is



0



0

f (x)

x + y dx

p

d y <



π

sin(π/ p)

p

where the constant factor (π/sin(π/ p)) pis still the best possible

Hardy-Hilbert integral inequality is important in analysis and applications During the past few years, many researchers obtained various generalizations, variants, and ex-tensions of inequality (1.1) (see [3–9] and the references cited therein)

Trang 2

Hardy et al [1] gave a Hilbert-type integral inequality similar to (1.1) as



0

ln(x/ y)

x − y f (x)g(y)dx d y <

sin(π/ p)

 2 

0 f p(x)dx

 1/ p

0 g q(x)dx

 1/q

, (1.3)

where the constant factor (π/sin(π/ p))2is the best possible

Recently, Yang gave a generalization of (1.3) as (see [9])



0

ln(x/ y) f (x)g(y)

<

λ sin(π/ p)

 2 

0 x(p −1)(1− λ) f p(x)dx

 1/ p

0 x(q −1)(1− λ) g q(x)dx

 1/q

, (1.4)

where the constant factor (π/λ sin(π/ p))2is the best possible Its equivalent form is



0 y λ −1



0

ln(x/ y) f (x)

x λ − y λ dx

p

d y <

λ sin(π/ p)

 2p

0 x(p −1)(1− λ) f p(x)dx, (1.5) where the constant factor (π/λ sin(π/ p))2pis the best possible

At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multiple Hilbert-type integral inequalities have been studied Hong [10] obtained the following If

a > 0,

n



i =1

1

p i =1, pi > 1, ri = p1

i

n

i =1

pi, λ >1

a



n −1− r1

i



, i =1, 2, , n, (1.6)

then



α ···



α

1

n

i =1 x i − α a λ

n

i =1

f i x i

dx1dx2··· dx n

Γn(1/α)

α n −1Γ(λ)

n

i =1



Γ1a11

ri



Γλ −1 a



n −11 ri



α (t − α) n −1− αλ f p i

i (t)dt

 1/ p i

.

(1.7) Yang and Kuang, and others obtained some multiple Hilbert-type integral inequalities (see [5,11,12])

The main objective of this paper is to build multiple Hilbert-type integral inequalities with best constant factor of (1.4) and (1.5)

For this reason, we introduce signs as

R +

n = x = x1,x2, , x n

:x1,x2, , x n > 0

,

 x  α = x α

1+x α

2+···+x α 1

and we agree with x  α < c representing { x ∈ R+

n: x  α < c }

Trang 3

2 Lemmas

First we give some multiple integral formulas

Lemma 2.1 (see [13]) If p i > 0, i =1, 2, , n, f (τ) is a measurable function, then



t1 ,t2 , ,t n >0;t1 +t2 +···+t n ≤1f t1+t2+···+tn

t1p1−1t2p2−1··· t p n −1

n dt1dt2··· dtn

=Γ p1

Γ p2

···Γ pn

Γ p1+p2+···+pn 1

0 f (τ)τ p1 +p2 +···+p n −1dτ.

(2.1)

Lemma 2.2 If r > 0, pi > 0, i =1, 2, , n, f (τ) is a measurable function, then



t1 ,t2 , ,t n >0;t1 +t2 +···+t n ≤ r f t1+t2+···+tn

t1p1−1t2p2−1··· t p n −1

n dt1dt2··· dtn

=Γ p1

Γ p2

···Γ pn

Γ p1+p2+···+pn r

0 f (τ)τ p1 +p2 +···+p n −1dτ,

(2.2)



t1 ,t2 , ,t n >0 f t1+t2+···+tn

t1p1−1t2p2−1··· t p n −1

n dt1dt2··· dtn

=Γ p1

Γ p2

···Γ p n

Γ p1+p2+···+pn 

0 f (τ)τ p1 +p2 +···+p n −1dτ.

(2.3)

Proof Setting t i /r = u i(i =1, 2, , n) on the left-hand side of (2.2) we obtain (2.2) from

From (2.1) and (2.3), we have the following lemma

Lemma 2.3



t1 ,t2 , ,t n >0; t1 +t2 +···+t n ≥1f t1+t2+···+t n

t1p1−1t2p2−1··· t p n −1

n dt1dt2··· dt n

=Γ p1

Γ p2

···Γ p n

Γ p1+p2+···+p n 

1 f (τ)τ p1 +p2 +···+p n −1dτ.

(2.4)

Settingti =(xi/ai)α i (i =1, 2, , n) in (2.1), (2.2), (2.3), (2.4) we have the following lemma

Trang 4

Lemma 2.4 If pi > 0, ai > 0, αi > 0, i =1, 2, , n, f (τ) is a measurable function, then



x1 ,x2 , ,x n >0; (x1/a1 )α1+(x2/a2 )α2+···+(x1/a n)αn ≤1f

x

1

a1

α1

+

x

2

a2

α2

+···+

x

1

an

α n

× x1p1−1x2p2−1··· x p n −1

n dx1dx2··· dxn

= a

p1

1 a p2

2 ··· a p n

nΓ p11

Γ p22

···Γ pn/αn

α1α2··· αnΓ p11+p22+···+pn/αn 1

0 f (τ)τ p11 +p22 +···+p n /α n −1dτ,



x1 ,x2 , ,x n >0; (x1/a1 )α1+(x2/a2 )α2+···+(x1/a n)αn ≤ r f

x

1

a1

α1

+

x

2

a2

α2

+···+

x

1

a n

α n

× x1p1−1x2p2−1··· x p n −1

n dx1dx2··· dx n

= a

p1

1 a p2

2 ··· a p n

nΓ p11

Γ p22

···Γ p n /α n

α1α2··· αnΓ p11+p22+···+pn/αn r

0 f (τ)τ p11 +p22 +···+p n /α n −1dτ,



x1 ,x2 , ,x n >0 f

x

1

a1

α1

+

x

2

a2

α2

+···+

x

1

an

α n

x1p1−1x2p2−1··· x p n −1

n dx1dx2··· dxn

= a

p1

1 a p2

2 ··· a p n

nΓ p11

Γ p22

···Γ pn/αn

α1α2··· αnΓ p11+p22+···+pn/αn 

0 f (τ)τ p11 +p22 +···+p n /α n −1dτ,



x1 ,x2 , ,x n >0; (x1/a1 )α1+(x2/a2 )α2+···+(x1/a n)αn ≥1f

x

1

a1

α1

+

x

2

a2

α2

+···+

x

1

an

α n

× x1p1−1x2p2−1··· x p n −1

n dx1dx2··· dx n

= a

p1

1 a p2

2 ··· a p n

nΓ p11

Γ p22

···Γ p n /α n

α1α2··· α nΓ p11+p22+···+p n /α n 

1 f (τ)τ p11 +p22 +···+p n /α n −1dτ.

(2.5)

In particular, if p > 0, α > 0, f (τ) is a measurable function, then



x1 ,x2 , ,x n >0; x α

1 +x α

2 +···+x α ≤1f x α

1+x α

2+···+x α

dx1dx2··· dx n

= Γn(1/α)

α n Γ(n/α)

 1

0 f (τ)τ n/α −1dτ,

(2.6)



x1 ,x2 , ,x n >0; x α

1 +x α

2 +···+x α ≥1f x α1+x2α+···+x α n

dx1dx2··· dxn

= Γn(1/α)

α n Γ(n/α)



1 f (τ)τ n/α −1dτ.

(2.7)

The following result holds

Trang 5

Lemma 2.5 If p > 1, n ∈ Z+ , α > 0, λ > 0, define the weight function wα,λ(x, p) as

wα,λ(x, p) =



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

 x 

α

 y  α

n − λ/ p

Then

wα,λ(x, p) =  x  n − λ

α Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2

Proof By (2.6) and (2.7), we have

w α,λ(x, p) =  x  n α − λ/ p



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

 y  λ/ p α − n d y

=  x  n α − λ/ p



y1 ,y2 , ,y n >0

ln y α

1+y α

2+···+y α 1

/  x  α

y1α+y2α+···+y α λ/α

−  x  λ α

× y α

1+y α

2+···+y α (1/α)(λ/ p − n)

d y1d y2··· d y n

=  x  n α − λ/ p Γn(1/α)

α n Γ(n/α)



0

ln t1/α /  x  α

t λ/α −  x  λ

α

t(1/α)(λ/ p − n) t n/α −1dt.

(2.10) Setting (t1/α /  x  α)λ = u we have

wα,λ(x, p) =  x  n − λ

α Γn(1/α)

α n −1Γ(n/α)

1

λ2



0

lnu

u −1u

From [1, Theorem 342] we have (12)

0 (lnu/(u −1))u1/ p −1du =(π/λ sin(π/ p))2

So we obtain

w α,λ(x, p) =  x  n − λ

α Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2

Lemma 2.6 If λ > 0, s > 0, then



1

1

x

 1/x λ

0

lnu

u −1u

s −1du dx =2

λ



n =0

1

Proof Since

lnu

u −1u

s −1= −lnu



n =0

Trang 6

 1/x λ

0

lnu

u −1u

s −1du =



n =0

 1/x λ

0 (lnu)u n+s −1du

=



n =0

 λ

n + s x

− λ(n+s)lnx + 1

(n + s)2x − λ(n+s)



,



1

1

x

 1/x λ

0

lnu

u −1u

s −1du dx =



1



n =0

 λ

n + s x −

λ(n+s) −1+ 1

(n + s)2x − λ(n+s) −1 

dx

=



n =0



1

λ

n + s x

− λ(n+s) −1lnx dx +



1

1 (n + s)2x − λ(n+s) −1dx



=2 λ



n =0

1 (n + s)3.

(2.15)



We next give a key lemma in this paper

Lemma 2.7 If p > 1, 1/ p + 1/q = 1, n ∈ Z+ , α > 0, λ > 0, 0 < ε < qλ/2p, then

A : =



 x  α ≥1



 y  α ≥1

ln  x  α /  y  α

 x  λ

α −  y  λ

α  x  − α((n − λ)(p −1)+n+ε)/ p  y  − α((n − λ)(q −1)+n+ε)/q dx d y

 Γn(1/α)

α n −1Γ(n/α)

 2 

π

λ sin(π/ p)

 2 1

ε 1 +o(1)

, ε −→0+.

(2.16)

Proof We have



 x  α ≥1 x  λ/q α − n − ε/ p dx ×



y α

1 +y α

2 +···+y α ≥1

ln y α

1+y α

2+···+y α 1

/  x  α

y α

1+y α

2+···+y α λ/α

−  x  λ α

× y1α+y2α+···+y α (1/α)(λ/ p − n − ε/q)

d y1d y2··· d yn

=



 x  α ≥1 x  λ/q α − n − ε/ p dx Γn(1/α)

α n Γ(n/α)



1

ln t1/α /  x  α

t λ/α −  x  λ

α

t(1/α)(λ/ p − n − ε/q) t n/α −1dt.

(2.17)

Setting (t1/α /  x  α)λ = u, we have



 x  α ≥1 x  − n − ε

α dx Γn(1/α)

α n −1Γ(n/α)

1

λ2



1/  x  λ

lnu

u −1u

1/ p −1− ε/λq du

=



 x  α ≥1 x  − n − ε

α dx Γn(1/α)

α n −1Γ(n/α)

1

λ2



0

lnu

u −1u

1/ p −1− ε/λq du



 x  ≥1 x  − n − ε

α dx Γn(1/α)

α n −1Γ(n/α)

1

λ2

1/  x  λ

0

lnu

u −1u

1/ p −1− ε/λq du.

(2.18)

Trang 7



 x  α ≥1 x  − n − ε



x1 ,x2 , ,x n >0; x α

1 +x α

2 +···+x α ≥1(x α

1+x α

2+···+x α)(n+ε)/α dx1dx2··· dxn

= Γn(1/α)

α n Γ(n/α)



1 u −(n+ε)/α u n/α −1du

= Γn(1/α)

α n Γ(n/α)



1 u − ε/α −1du = Γn(1/α)

α n −1Γ(n/α) ·

1

ε,

1

λ2



0

lnu

u −1u

1/ p −1− ε/λq du =



π

λ sin(π/ p)

 2 +o(1).

(2.19) Further, from (2.7) andLemma 2.6we have

0



 x  α ≥1 x  − n − ε

α dx Γn(1/α)

α n −1Γ(n/α)

1

λ2

1/  x  λ

0

lnu

u −1u

1/ p −1− ε/λq du



 x  α ≥1 x  − n

α dx Γn(1/α)

α n −1Γ(n/α)

1

λ2

1/  x  λ

0

lnu

u −1u

1/2p −1du

= Γn(1/α)

α n −1Γ(n/α)

1

λ2



1 t − n/α

 1/t λ/α

0

lnu

u −1u

1/2p −1du



t n/α −1dt

= Γn(1/α)

α n −1Γ(n/α) λ12

2α λ



n =0

1 (n + 1/2p)3 =n(1/α)

α n −2λ3Γ(n/α)



n =0

1 (n + 1/2p)3.

(2.20)

Then

A ≥ Γn(1/α)

α n −1Γ(n/α)

 2  π

λ sin(π/ p)

 2 1

ε 1 +o(1)



3 Main results

Our main result is given in the following theorem

Theorem 3.1 If p > 1, 1/ p + 1/q = 1, n ∈ Z , α > 0, λ > 0, f , g ≥ 0, satisfy

0<



Rn+ x (α n − λ)(p −1)f p(x)dx < ∞,

0<



Rn  y (α n − λ)(q −1)g q(y)d y < ∞

(3.1)

Trang 8

J : =



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f (x)g(y)dx d y < Γn(1/α)

α n −1Γ(n/α)



π

λ sin(π/ p)

 2

×

Rn

+

 x (α n − λ)(p −1)f p(x)dx

 1/ p

Rn

+

 y (α n − λ)(q −1)g q(y)d y

 1/q

,

(3.2)



Rn+ y  λ − n

α



Rn+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p

d y

<

λ sin(π/ p)

 2 Γn(1/α)

α n −1Γ(n/α)

p

Rn

+

 x (α n − λ)(p −1)f p(x)dx.

(3.3)

The constant factors (Γn(1/α)/α n −1Γ(n/α))[π/λsin(π/p)]2, [(π/λ sin(π/ p))2(Γn(1/α)/

α n −1Γ(n/α))] p are the best possible.

Proof By H¨older’s inequality, one has



Rn+

ln  x  α/  y 

α

 x  λ

α −  y  λ α

 1/ p x 

α

 y  α

 (n − λ)/ p+λ/ pq

 x (1α /q −1/ p)(n − λ) f (x)

×

ln  x  α/  y 

α

 x  λ

α −  y  λ

α

 1/q  y  α

 x  α

 (n − λ)/q+λ/qp

 y (1α / p −1/q)(n − λ) g(y)dx d y



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

 x 

α

 y  α

n − λ+λ/q

 x (α p/q −1)(n − λ) f p(x)dx d y

 1/ p

×



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

  y  α

 x  α

n − λ+λ/ p

 y (α q/ p −1)(n − λ) g q(y)dx d y

 1/q

=



Rn+

ln  x  α/  y  α

 x  λ

α −  y  λ α

 x 

α

 y  α

n − λ/ p

 x (α p −2)(n − λ) f p(x)dx d y

 1/ p

×



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

  y  α

 x  α

n − λ/q

 y (α q −2)(n − λ) g q(y)dx d y

 1/q

=



Rn+wα,λ(x, p)  x (α n − λ)(p −2)f p(x)dx

 1/ p

Rn+wα,λ(y, q)  y (α n − λ)(q −2)g q(y)d y

 1/q

(3.4)

According to the condition of taking equality in H¨older’s inequality, if this inequality takes the form of an equality, then there exist constantsC andC , such that they are not

Trang 9

all zero, and

C1

ln  x  α /  y  α

 x  λ

α −  y  λ

α



 x  α

 y  α

n − λ/ p

 x (α p −2)(n − λ) f p(x)

= C2

ln  x  α/  y  α

 x  λ

α −  y  λ α

  y  α

 x  α

n − λ/q

 y (α q −2)(n − λ) g q(y), a.e inRn

+× R n

+.

(3.5)

It follows that

C1x  n  x (α p −1)(n − λ) f p(x) = C2y  n  y (α q −1)(n − λ) g q(y)

+× R n

+,

(3.6)

which contradicts (3.1) Hence we have

J <



Rn+wα,λ(x, p)  x (α n − λ)(p −2)f p(x)dx

 1/ p

Rn+wα,λ(y, q)  y (α n − λ)(q −2)g q(y)d y

 1/q

(3.7)

ByLemma 2.5and sinceπ/sin(π/ p) = π/sin(π/q), we have

J < Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2 

Rn+ x (α n − λ)(p −1)f p(x)dx

 1/ p

×



Rn

+

 y (α n − λ)(q −1)g q(y)d y

 1/q

(3.8)

Hence (3.2) is valid

For 0< a < b < ∞, let us define

g a,b(y) =

 y  λ − n

α



Rn+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p −1 , a <  y  α < b,



g(y) =  y  λ − n

α



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f (x)dx

p −1 , y ∈ R n

+.

(3.9)

By (3.1), for sufficiently small a > 0 and sufficiently large b > 0, we have

0<



a<  y  <b  y (α n − λ)(q −1)g a,b q (y)d y < ∞ (3.10)

Trang 10

Hence by (3.2) we have



a<  y  α <b  y (α n − λ)(q −1)gq(y)d y

=



a<  y  α <b  y  λ − n

α



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p

d y

=



a<  y  α <b  y  λ − n

α



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p −1

×



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f (x)dx



d y

=



Rn+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)ga,b(y)dx d y

< Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2 

Rn

+

 x (α n − λ)(p −1)f p(x)dx

 1/ p

×



Rn

+

 y (α n − λ)(q −1)g a,b q (y)d y

 1/q

= Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2 

Rn

+

 x (α n − λ)(p −1)f p(x)dx

 1/ p

×



a<  y  α <b  y (α n − λ)(q −1)gq(y)d y

 1/q

(3.11)

It follows that



a<  y  α <b  y (α n − λ)(q −1)gq(y)d y <

λ sin(π/ p)

 2 Γn(1/α)

α n −1Γ(n/α)

p

Rn

+

 x (α n − λ)(p −1)f p(x)dx.

(3.12)

Fora →0+,b →+, by (3.1), we have



Rn

+

 y (α n − λ)(q −1)gq(y)d y ≤



π

λ sin(π/ p)

 2 Γn(1/α)

α n −1Γ(n/α)

p

Rn

+

 x (α n − λ)(p −1)f p(x)dx < ∞

(3.13)

Trang 11

Hence by (3.2) we have



Rn

+

 y  λ − n

α



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f (x)dx

p

d y

=



Rn+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x) g(y)dx d y

< Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2 

Rn

+

 x (α n − λ)(p −1)f p(x)dx

 1/ p

×



Rn+ y (α n − λ)(q −1)gq(y)d y

 1/q

= Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2 

Rn

+

 x (α n − λ)(p −1)f p(x)dx

 1/ p

×



Rn

+

 y  λ − n α



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p

d y

 1/q

(3.14)

It follows that



Rn

+

 y  λ − n α



Rn

+

ln  x  α/  y  α

 x  λ

α −  y  λ α

f (x)dx

p

d y

<

λ sin(π/ p)

 2 Γn(1/α)

α n −1Γ(n/α)

p

Rn

+

 x (α n − λ)(p −1)f p(x)dx,

(3.15)

hence (3.3) is valid

If the constant factorC n,α(λ, p) =(π/λ sin(π/ p))2(Γn(1/α)/α n −1Γ(n/α)) in (3.2) is not the best possible, then there exists a positive numberk (with k < Cn,α(λ, p)), such that

(3.2) is still valid if one replacesCn,α(λ, p) by k.

For 0< ε < qλ/2p, by sitting

(x) =

 x  − α((n − λ)(p −1)+n+ε)/ p,  x  α ≥1,

(y) =

 y  − α((n − λ)(q −1)+n+ε)/q,  y  α ≥1,

(3.16)

Trang 12

we have



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f ε(x)g ε(y)dx d y

< k



Rn

+

 x (α n − λ)(p −1)f ε p(x)dx

 1/ p

Rn

+

 y (α n − λ)(q −1)g ε q(y)d y

 1/q

,



 x  α ≥1



 y  α ≥1

ln  x  α /  y  α

 x  λ

α −  y  λ α

(x)gε(y)dx d y

< k



 x  α ≥1 x (α n − λ)(p −1) x  − α(n − λ)(p −1)− n − ε dx

 1/ p

×



 y  α ≥1 y (α n − λ)(q −1) y  − α(n − λ)(q −1)− n − ε d y

 1/q

= k



 x  α ≥1 x  − n − ε

α dx = k · Γn(1/α)

α n −1Γ(n/α) ·

1

ε .

(3.17)

On the other hand, fromLemma 2.7we have



Rn

+

ln  x  α /  y  α

 x  λ

α −  y  λ α

f ε(x)g ε(y)dx d y

 Γn(1/α)

α n −1Γ(n/α)

 2  π

λ sin(π/ p)

 21

ε 1 +o(1)

, ε −→0+.

(3.18)

Hence we have

 Γn(1/α)

α n −1Γ(n/α)

 2  π

λ sin(π/ p)

 2 1

ε 1 +o(1)

≤ k · Γn(1/α)

α n −1Γ(n/α) ·

1

ε,

Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2

1 +o(1)

≤ k.

(3.19)

By sittingε →0+we have

Cn,α(λ, p) = Γn(1/α)

α n −1Γ(n/α)

λ sin(π/ p)

 2

This contradicts the fact thatk < Cn,α(λ, p), hence the constant factor in (3.2) is the best possible Since inequality (3.2) is equivalent to (3.3), the constant factor in (3.3) is also

Remark 3.2 By using (3.3) we can obtain (3.2), hence inequality (3.2) is equivalent to (3.3)

... =0

Trang 6

 1/x λ

0...

n: x  α < c }

Trang 3

2 Lemmas

First...

(2.7)

The following result holds

Trang 5

Lemma 2.5 If p > 1, n ∈ Z+ , α >

Ngày đăng: 22/06/2014, 18:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm