Later, many different quadratic func-tional equations were solved by numerous authors [2–6].. Results The m-variable quadratic functional equation 1.2 induces the quadratic functional equ
Trang 1Volume 2007, Article ID 24716, 8 pages
doi:10.1155/2007/24716
Research Article
A Multidimensional Functional Equation Having
Quadratic Forms as Solutions
Won-Gil Park and Jae-Hyeong Bae
Received 7 July 2007; Accepted 3 September 2007
Recommended by Vijay Gupta
We obtain the general solution and the stability of them-variable quadratic functional
equation f (x1+y1, ,x m+y m) + f (x1− y1, ,x m − y m)=2f (x1, ,x m) + 2f (y1, ,
y m) The quadratic form f (x1, ,x m)=1≤ i ≤ j ≤ a ij x i x jis a solution of the given func-tional equation
Copyright © 2007 W.-G Park and J.-H Bae This is an open access article distributed un-der the Creative Commons Attribution License, which permits unrestricted use, distribu-tion, and reproduction in any medium, provided the original work is properly cited
1 Introduction
In this paper, letX and Y be real vector spaces A mapping f is called a quadratic form if
there exista ij ∈ R(1≤ i ≤ j ≤ m) such that
fx1, ,x m
1≤ i ≤ j ≤
for allx1, ,x m ∈ X.
For a mapping f : X m → Y, consider the m-variable quadratic functional equation
fx1+y1, ,x m+y m
+fx1− y1, ,x m − y m
=2fx1, ,x m
+ 2fy1, , y m
.
(1.2) WhenX = Y = R, the quadratic form f :Rm →Rgiven by
fx1, ,x m
1≤ i ≤ j ≤
is a solution of (1.2)
Trang 2For a mappingg : X → Y, consider the quadratic functional equation
g(x + y) + g(x − y) =2g(x) + 2g(y). (1.4)
In 1989, Acz´el [1] proposed the solution of (1.4) Later, many different quadratic func-tional equations were solved by numerous authors [2–6]
In this paper, we investigate the relation between (1.2) and (1.4) And we find out the general solution and the generalized Hyers-Ulam stability of (1.2)
2 Results
The m-variable quadratic functional equation (1.2) induces the quadratic functional equation (1.4) as follows
Theorem 2.1 Let f : X m → Y be a mapping satisfying ( 1.2 ) and let g : X → Y be the mapping given by
for all x ∈ X, then g satisfies ( 1.4 ).
Proof By (1.2) and (2.1),
g(x + y) + g(x − y) = f (x + y, ,x + y) + f (x − y, ,x − y)
=2f (x, ,x) + 2 f (y, , y) =2g(x) + 2g(y) (2.2)
The quadratic functional equation (1.4) induces them-variable quadratic functional
equation (1.2) with an additional condition
Theorem 2.2 Let a ij ∈ R(1≤ i ≤ j ≤ m) and g : X → Y be a mapping satisfying ( 1.4 ) If
f : X m → Y is the mapping given by
fx1, ,x m
:=
m
i =1
a ii gx i
+1 4
1≤ i<j ≤
a ij
gx i+x j
− gx i − x j
(2.3)
for all x1, ,x m ∈ X, then f satisfies ( 1.2 ) Furthermore, ( 2.1 ) holds if
1≤ i ≤ j ≤
Trang 3Proof By (1.4) and (2.3),
fx1+y1, ,x m+y m
+fx1− y1, ,x m − y m
=
m
i =1
a ii
gx i+y i
+gx i − y i
+1
4
1≤ i<j ≤ a ij
gx i+y i+x j+y j
− gx i+y i − x j − y j
+1
4
1≤ i<j ≤
a ij
gx i − y i+x j − y j
− gx i − y i − x j+y j
=2
m
i =1
a ii
gx i
+gy i
+1
4
1≤ i<j ≤
a ij
gx i+y i+x j+y j
+gx i − y i+x j − y j
−1
4
1≤ i<j ≤
a ij
gx i+y i − x j − y j
+gx i − y i − x j+y j
=2
m
i =1
a ii
gx i
+gy i
+1
2
1≤ i<j ≤
a ij
gx i+x j
+gy i+y j
− gx i − x j
− gy i − y j
=2fx1, ,x m
+ 2fy1, , y m
(2.5)
for allx1, ,x m,y1, , y m ∈ X.
Lettingx = y =0 andy = x in (1.4), respectively,
for allx ∈ X By (2.3) and the above two equalities,
f (x, ,x) =m
i =1a ii g(x) +1
4
1≤ i<j ≤ a ij
g(2x) − g(0)=
1≤ i ≤ j ≤ a ij g(x) = g(x) (2.7)
Example 2.3 The function g : R→Rgiven byg(x) = x2 satisfies (1.4) ByTheorem 2.2, the quadratic form f :Rm →Rgiven by
fx1, ,x m
1≤ i ≤ j ≤
satisfies (1.2)
Trang 4Example 2.4 Let g : C→Cbe the function given byg(z) = zz Then, it satisfies the
qua-dratic functional equation (1.4) If f :Cm → Cis the mapping given by (2.3), that is,
fz1, ,z m
=
m
i =1
z i z i
i
j =1
a ji+1 2
m
j = i+1 a ij
then f satisfies the m-variable quadratic functional equation (1.2)
Example 2.5 Let M2(R) be the real vector space of all 2×2 real matrices andg : M2(R)→R
the determinant function given by
for allA ∈ M2(R) Then, it satisfies (1.4) Using (2.3), f : M2(R)× M2(R)→Ris given
by f (A,B) =(a11+ (1/2)a12) det (A) + (a22+ (1/2)a12) det (B)(a11,a12,a21,a22∈ R) Also,
f satisfies (1.2)
In the following theorem, we find out the general solution of them-variable quadratic
functional equation (1.2)
Theorem 2.6 A mapping f : X m → Y satisfies ( 1.2 ) if and only if there exist symmetric biadditive mappings S1, ,S m:X2→ Y and biadditive mappings M ij:X2→ Y (1 ≤ i < j ≤
m) such that
fx1, ,x m
=
m
i =1
S i
x i,x i
1≤ i<j ≤
M ij
x i,x j
(2.11)
for all x1, ,x m ∈ X.
Proof We first assume that f is a solution of (1.2) Define f1, , f m:X → Y by f1(x) : =
f (x,0, ,0), , f m(x) : = f (0, ,0,x) for all x ∈ X One can easily verify that f1, , f m
are quadratic By [1], there exist symmetric biadditive mappingsS1, ,S m:X2→ Y such
that f1(x) = S1(x,x), , f m(x) = S m(x,x) for all x ∈ X Define M ij:X2→ Y by
M ij(x, y) : = f (0, ,0,x,0, ,0, y,0, ,0) − f (0, ,0,x,0, ,0,0,0, ,0)
for alli, j with 1 ≤ i < j ≤ m and all x, y ∈ X On the right-hand side of (2.12),x and y
are theith and the jth components, respectively Then, M ijare biadditive for alli, j with
Trang 51≤ i < j ≤ m Indeed, by (1.2) and (2.12), we obtain
M ij
x1+x2,y
= f0, ,0,x1+x2, 0, ,0, y,0, ,0− f0, ,0,x1+x2, 0, ,0,0,0, ,0
− f (0, ,0,0,0, ,0, y,0, ,0)
= f0, ,0,x1+x2, 0, ,0, y,0, ,0
−1
2
f0, ,0,x1+x2, 0, ,0, y,0, ,0+ f0, ,0,x1+x2, 0, ,0, − y,0, ,0
=1
2
f0, ,0,x1+x2, 0, ,0, y,0, ,0− f0, ,0,x1+x2, 0, ,0, − y,0, ,0
= f (0, ,0,x1+x2, 0, ,0, y,0, ,0)
−1
2
f0, ,0,x1+x2, 0, ,0, y,0, ,0+ f0, ,0,x1+x2, 0, ,0, − y,0, ,0
= f0, ,0,x1+x2, 0, ,0, y,0, ,0− f0, ,0,x1+x2, 0, ,0,0,0, ,0
− f (0, ,0,0,0, ,0, y,0, ,0)
=1
2
2f0, ,0,x1+x2, 0, ,0, y,0, ,0+ 2f (0, ,0,0,0, ,0, y,0, ,0)
−2f0, ,0,x1+x2, 0, ,0,0,0, ,0−2f (0, ,0,0,0, ,0, y,0, ,0)
=1
2
f0, ,0,x1+x2, 0, ,0,2y,0, ,0− f0, ,0,x1+x2, 0, ,0,0,0, ,0
−2f (0, ,0,0,0, ,0, y,0, ,0)
=1
2
f0, ,0,x1+x2, 0, ,0,2y,0, ,0+f0, ,0,x1− x2, 0, ,0,0,0, ,0
−1
2
f0, ,0,x1+x2, 0, ,0,0,0, ,0+f0, ,0,x1− x2, 0, ,0,0,0, ,0
−2f (0, ,0,0,0, ,0, y,0, ,0)
= f0, ,0,x1, 0, ,0, y,0, ,0+f0, ,0,x2, 0, ,0, y,0, ,0
− f0, ,0,x1, 0, ,0,0,0, ,0− f0, ,0,x2, 0, ,0,0,0, ,0
−2f (0, ,0,0,0, ,0, y,0, ,0)
= f0, ,0,x1, 0, ,0, y,0, ,0
−f0, ,0,x1, 0, ,0,0,0, ,0+f (0, ,0,0,0, ,0, y,0, ,0)
+f0, ,0,x2, 0, ,0, y,0, ,0
−f0, ,0,x2, 0, ,0,0,0, ,0+f (0, ,0,0,0, ,0, y,0, ,0
= M ij
0, ,0,x1, 0, ,0, y,0, ,0+M ij
0, ,0,x2, 0, ,0, y,0, ,0
(2.13)
Trang 6for allx1,x2,y ∈ X Similarly,
M ij
0, ,0,x,0, ,0, y1+y2, 0, ,0
= M ij
0, ,0,x,0, ,0, y1, 0, ,0+M ij
0, ,0,x,0, ,0, y2, 0, ,0 (2.14)
for allx, y1,y2∈ X.
Conversely, we assume that there exist symmetric biadditive mappingsS1, ,S m:X2→ Y
and biadditive mappingsM ij:X2→ Y (1 ≤ i < j ≤ m) such that
fx1, ,x m
=
m
i =1
S i
x i,x i
1≤ i<j ≤
M ij
x i,x j
(2.15)
for allx1, ,x m ∈ X Since M ij(1≤ i < j ≤ m) are biadditive and S1, ,S mare symmetric biadditive,
fx1+y1, ,x m+y m
+ fx1− y1, ,x m − y m
=
m
i =1
S i
x i+y i,x i+y i
1≤ i<j ≤
M ij
x i+y i,x j+y j
+
m
i =1
S i
x i − y i,x i − y i
1≤ i<j ≤
M ij
x i − y i,x j − y j
=
m
i =1
S i
x i,x i
+ 2S i
x i,y i) +S i
y i,y i
1≤ i<j ≤
M ij
x i,x j
+M ij
x i,y j
+M ij
y i,x j
+M ij
y i,y j
+
m
i =1
S i
x i,x i
−2S i
x i,y i
+S i
y i,y i
1≤ i<j ≤
M ij
x i,x j
− M ij
x i,y j
− M ij
y i,x j
+M ij
y i,y j
=2
m
i =1
S i
x i,x i
1≤ i<j ≤
M ij
x i,x j
+ 2
m
i =1
S i
y i,y i
1≤ i<j ≤
M ij
y i,y j
=2fx1, ,x m
+ 2fy1, , y m
(2.16)
LetY be complete and let ϕ : X2m →[0,∞) be a function satisfying
ϕx1, ,x m,y1, , y m
:=
∞
j =0
1
4j+1 ϕ2j x1, ,2 j x m, 2j y1, ,2 j y m
< ∞ (2.17) for allx1, ,x m,y1, , y m ∈ X.
Trang 7Theorem 2.7 Let f : X m → Y be a mapping such that
fx1+y1, ,x m+y m
+fx1− y1, ,x m − y m
−2fx1, ,x m
−2fy1, , y m ϕx1, ,x m,y1, , y m (2.18)
for all x1, ,x m,y1, , y m ∈ X Then, there exists a unique m-variable quadratic mapping
F : X m → Y such that
fx1, ,x m
− Fx1, ,x m ϕx1, ,x m,x1, ,x m
(2.19)
for all x1, ,x m ∈ X The mapping F is given by
Fx1, ,x m
:=lim
j →∞
1
4j f2j x1, ,2 j x m
(2.20)
for all x1, ,x m ∈ X.
Proof Letting y1= x1, , y m = x min (2.18), we have
fx1, ,x m
−1
4
f (0, ,0) + f2x1, ,2x m 1
4ϕx1, ,x m,x1, ,x m
(2.21) for allx1, ,x m ∈ X Thus, we obtain
1
4j f2j x1, ,2 j x m
− 1
4j+1
f (0, ,0) + f2j+1 x1, ,2 j+1 x m
≤ 1
4j+1 ϕ2j x1, ,2 j x m, 2j x1, ,2 j x m (2.22)
for allx1, ,x m ∈ X and all j For given integers l, n (0 ≤ l < n), we get
1
4l f2l x1, ,2 l x m
− 1
4n
f (0, ,0) + f2n x1, ,2 n x m
n −1
j = l
1
4j+1 ϕ2j x1, ,2 j x m, 2j x1, ,2 j x m (2.23)
for all x1, ,x m ∈ X By (2.23), the sequence{(1/4 j)f (2 j x1, ,2 j x m)}is a Cauchy se-quence for allx1, ,x m ∈ X Since Y is complete, the sequence {(1/4 j)f (2 j x1, ,2 j x m)}
converges for allx1, ,x m ∈ X Define F : X m → Y by
Fx1, ,x m
:=lim
j →∞
1
4j f2j x1, ,2 j x m
(2.24)
Trang 8for allx1, ,x m ∈ X By (2.18), we have
1
4j f2j
x1+y1
, ,2 j
x m+y m
+ 1
4j f2j
x1− y1
, ,2 j
x m − y m
− 2
4j f2j x1, ,2 j x m
− 2
4j f2j y1, ,2 j y m 1
4j ϕ2j x1, ,2 j x m, 2j y1, ,2 j y m
(2.25) for allx1, ,x m,y1, , y m ∈ X and all j Letting j →∞and using (2.17), we see thatF
sat-isfies (1.2) Settingl =0 and takingn →∞in (2.23), one can obtain the inequality (2.19)
IfG : X m → Y is another m-variable quadratic mapping satisfying (2.19), we obtain
Fx1, ,x m
− Gx1, ,x m
= 1
4n F2n x1, ,2 n x m
− G2n x1, ,2 n x m
≤ 1
4n F2n x1, ,2 n x m
− f2n x1, ,2 n x m
+ 1
4n f2n x1, ,2 n x m
− G2n x1, ,2 n x m
≤ 2
4n ϕ2n x1, ,2 n x m, 2n x1, ,2 n x m
−→0 asn −→ ∞
(2.26)
for allx1, ,x m ∈ X Hence, the mapping F is the unique m-variable quadratic mapping,
References
[1] J Acz´el and J Dhombres, Functional Equations in Several Variables, vol 31 of Encyclopedia of
Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 1989.
[2] J.-H Bae and K.-W Jun, “On the generalized Hyers-Ulam-Rassias stability of ann-dimensional
quadratic functional equation,” Journal of Mathematical Analysis and Applications, vol 258,
no 1, pp 183–193, 2001.
[3] J.-H Bae and W.-G Park, “On the generalized Hyers-Ulam-Rassias stability in Banach modules over aC ∗ -algebra,” Journal of Mathematical Analysis and Applications, vol 294, no 1, pp 196–
205, 2004.
[4] J.-H Bae and W.-G Park, “On stability of a functional equation withn-variables,” Nonlinear Analysis: Theory, Methods & Applications, vol 64, no 4, pp 856–868, 2006.
[5] S.-M Jung, “On the Hyers-Ulam stability of the functional equations that have the quadratic
property,” Journal of Mathematical Analysis and Applications, vol 222, no 1, pp 126–137, 1998 [6] W.-G Park and J.-H Bae, “On a bi-quadratic functional equation and its stability,” Nonlinear
Analysis: Theory, Methods & Applications, vol 62, no 4, pp 643–654, 2005.
Won-Gil Park: National Institute for Mathematical Sciences, 385-16 Doryong-Dong, Yuseong-Gu, Daejeon 305-340, South Korea
Email address:wgpark@nims.re.kr
Jae-Hyeong Bae: Department of Applied Mathematics, Kyung Hee University, Yongin 449-701, South Korea
Email address:jhbae@khu.ac.kr
... the generalized Hyers-Ulam-Rassias stability of ann-dimensionalquadratic functional equation, ” Journal of Mathematical Analysis and Applications,...
Trang 8for allx1, ,x m ∈ X By (2.18), we have
1... allx1, ,x m,y1, , y m ∈ X.
Trang 7Theorem