1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Euler-Lagrange Type Cubic Operators and Their Norms on Xλ Space" pptx

8 183 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 471,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Box 55181-83111, Maragheh, East Azarbayjan, Iran Correspondence should be addressed to Abbas Najati, a.najati@uma.ac.ir Received 17 April 2008; Accepted 1 July 2008 Recommended by Jong K

Trang 1

Volume 2008, Article ID 195137, 8 pages

doi:10.1155/2008/195137

Research Article

Euler-Lagrange Type Cubic Operators

Abbas Najati 1 and Asghar Rahimi 2

1 Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili,

P.O Box 56199-11367 Ardabili, Iran

2 Department of Mathematics, University of Maragheh, P.O Box 55181-83111, Maragheh,

East Azarbayjan, Iran

Correspondence should be addressed to Abbas Najati, a.najati@uma.ac.ir

Received 17 April 2008; Accepted 1 July 2008

Recommended by Jong Kim

We will introduce linear operators and obtain their exact norms defined on the function spacesX λ

andZ5

λ These operators are constructed from the Euler-Lagrange type cubic functional equations and their Pexider versions.

Copyright q 2008 A Najati and A Rahimi This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

LetX and Y be complex normed spaces For a fixed nonnegative real number λ, we denote by

X λthe linear space of all functionsf : X→Y with pointwise operations for which there exists

a constantM f ≥ 0 with

fx ≤ M f e λx 1.1 for allx ∈ X It is easy to show that the space X λwith the norm

f : sup

x∈X



is a normed space Let us denote byX n

λthe linear space of all functionsφ : X × · · · × X  

n times

→Y with

pointwise operations for which there exists a constant Mφ≥ 0 with

φx1, , x n  ≤ M φ e λn

i1 x i 1.3

Trang 2

for allx1, , x n ∈ X It is not difficult to show that the space X n

λ with the norm

φ : sup

x1, ,x n ∈X

φx1, , x n e −λn

i1 x i 1.4

is a normed space

We denote by Z m

λ the normed space m

i1 X λ  {f1, , f m  : f1, , f m ∈ X λ} with pointwise operations together with the norm

f1, , f m  : max{f1, , f m }. 1.5 The norms of the Pexiderized Cauchy, quadratic, and Jensen operators on the function space X λ have been investigated by Czerwik and Dlutek1, 2 In 3, Moslehian et al have extended the results of2 to the Pexiderized generalized Jensen and Pexiderized generalized quadratic operators on the function space X λ and provided more general results regarding their norms

In4, Jung investigated the norm of the cubic operator on the function space Z5

λ

A functionf : X→Y is called a cubic function if and only if f is a solution function of the

cubic functional equation

fx  y  fx − y  2f

1

2x  y  2f

1

2x − y  12f

1

2x 1.6 Jun and Kim5 proved that when both X and Y are real vector spaces, a function f : X→Y

satisfies1.6 if and only if there exists a function B : X × X × X→Y such that fx  Bx, x, x

for all x ∈ X, and B is symmetric for each fixed one variable and is additive for fixed two

variables

In 6, the authors introduced the following Euler-Lagrange-type cubic functional equation, which is equivalent to1.6,

fx  y  fx − y  af

1

a x  y  af

1

a x − y  2aa2− 1f

1

a x 1.7

for fixed integersa with a / 0, ±1 Moreover, Jun and Kim 7 introduced the following Euler-Lagrange-type cubic functional equation

f

1

a x

1

b y f

1

b x

1

a y aba−b2



f

1

ab x f

1

ab y ababf

1

ab x

1

ab y

1.8 for fixed integersa, b with a, b / 0, a ± b / 0, and they proved the following theorem.

Theorem 1.1 see 7, Theorem 2.1 Let X and Y be real vector spaces If a mapping f : X→Y

satisfies the functional equation1.6, then f satisfies the functional equation 1.8.

We will introduce linear operators which are constructed from the Euler-Lagrange-type cubic and the Pexiderization of the Euler-Lagrange-type cubic functional equations1.7 and

1.8

Trang 3

Definition 1.2 The operators C P

1, C P

2 :Z5

λ →X2

λare defined by

C P

1f1, , f5x, y : f1x  y  f2x − y − mf3

1

m x  y

− mf4

1

m x − y − 2m



m2− 1f5

1

m x ,

C P

2f1, , f5x, y : f1

1

a x 

1

b y  f2

1

b x 

1

a y − a  ba − b2



f3

1

ab x  f4

1

ab y

− aba  bf5

1

ab x 

1

ab y ,

1.9 wherea, b, and m are fixed integers with a, b / 0, a ± b / 0, and m / 0, ±1.

Definition 1.3 The operators C1, C2 :X λ →X2

λare defined by

C1fx, y : fx  y  fx − y − mf

1

m x  y

− mf

1

m x − y − 2mm2− 1f

1

m x ,

C2fx, y : f

1

a x 

1

b y  f

1

b x 

1

a y

− a  ba − b2



f

1

ab x  f

1

ab y − aba  bf

1

ab x 

1

ab y ,

1.10

wherea, b, and m are fixed integers with a, b / 0, a ± b / 0, and m / 0, ±1.

In this paper, we will give the exact norms of the operatorsC P

1, C P

2 on the function space

Z5

λ , and norms of the operators C1, C2on the function spaceX λ The results extend the results

of4

2 Main results

Throughout this section,a, b, and m are fixed integers with a, b / 0, a ± b / 0, and m / 0, ±1.

The next theorems give us the exact norms of operatorsC P

1,C P

2,C1, andC2.

Theorem 2.1 The operator C P

1 :Z5

λ →X2

λ is a bounded linear operator with

C P

1  2|m|3 2. 2.1

Proof First, we show that C P

1 ≤ 2|m|3 2 Since

max



x  y, x − y,

m1x  y

,m1x − y

,m1x

≤ x  y 2.2

Trang 4

for allx, y ∈ X, we get

C P

1f1, , f5  sup

x,y∈X e −λxy

f1x  y  f2x − y − mf3

1

m x  y

− mf4

1

m x − y − 2mm2− 1f5

1

m x 

≤ sup

x,y∈X e −λxy f1x  y  sup

x,y∈X e −λx−y f2x − y

 |m| sup

x,y∈X e −λ1/mxy

f3

1

m x  y 

 |m| sup

x,y∈X e −λ1/mx−y

f4

1

m x − y 

 2|m|m2− 1sup

x∈X e −λ1/mx

f5

1

m x 

 f1  f2  |m|f3  |m|f4  2|m|m2− 1f5

≤ 2|m|3 2 max{f1, f2, f3, f4, f5}

 2|m|3 2f1, f2, f3, f4, f5

2.3

for eachf1, , f5 ∈ Z5

λ This implies that

C1P  ≤ 2|m|3 2. 2.4

Now, letν ∈ Y be such that ν  1 and let {ξ n}nbe a sequence of positive real numbers decreasing to 0 We define

f n x 

e2λξ n ν, ifx  2ξ n or x  0,

|m| m e2λξ n ν, if mx  |m  1|ξ n , mx  |m − 1|ξ n or mx  ξ n ,

0, otherwise

2.5

for allx ∈ X Hence we have

e −λx f n x 

e2λξ n , ifx  0,

1, ifx  2ξ n ,

e 2−|m1/m|λξ n , if mx  |m  1|ξ n ,

e 2−|m−1/m|λξ n , if mx  |m − 1|ξ n ,

e 2−1/|m|λξ n , ifmx  ξ n ,

0, otherwise

2.6

Trang 5

for allx ∈ X, so that f n ∈ X λ for all positive integersn, with

f n   e2λξ n 2.7

Letu ∈ X be such that u  1 and take x0, y0∈ X as x0 y0 ξ n u Then it follows from

the definition off nthat

C P

1f n , , f n  sup

x,y∈X e −λxy

f n x  y  f n x − y − mf n

1

m x  y

− mf n

1

m x − y − 2mm2− 1f n

1

m x 

≥ e −2λξ n e2λξ n ν  e2λξ n ν  |m|e2λξ n ν  |m|e2λξ n ν  2|m|m2− 1e2λξ n ν

 2|m|3 2.

2.8

If on the contraryC P

1 < 2|m|3 2, then there exists a δ > 0 such that

C P

1f n , , f n  ≤ 2|m|3 2 − δf n , , f n 2.9 for all positive integersn So it follows from 2.7, 2.8, and 2.9 that

2|m|3 2 ≤ C P

1f n , , f n  ≤ 2|m|3 2 − δe2λξ n 2.10

for all positive integersn Since lim n→∞ e2λξ n  1, the right-hand side of 2.10 tends to 2|m|3

2 − δ as n→∞, whence 2|m|3  2 ≤ 2|m|3 2 − δ, which is a contradiction Hence we have

C P

1  2|m|3 2.

Theorem 2.1 of4 is a result ofTheorem 2.1form  2.

Corollary 2.2 The operator C1:X λ →X2

λ is a bounded linear operator with

C1  2|m|3 2. 2.11

Proof The result follows from the proof ofTheorem 2.1

Theorem 2.3 The operator C P

2 :Z5

λ →X2

λ is a bounded linear operator with

C P

2  2|a  b|a − b2 |aba  b|  2. 2.12

Proof Since

max

a1x  b1y

,b1x  1a y

,ab1 x

,ab1 y

,ab1 x  ab1 y

≤ x  y 2.13

Trang 6

for allx, y ∈ X, we get

C P

2f1, , f5  sup

x,y∈X e −λxy

f1

1

a x 

1

b y  f2

1

b x 

1

a y

− a  ba − b2



f3

1

ab x  f4

1

ab y

− aba  bf5

1

ab x 

1

ab y 

≤ sup

x,y∈X e −λ1/ax1/by

f1

1

a x 

1

b y 

 sup

x,y∈X e −λ1/bx1/ay

f2

1

b x 

1

a y 

 |a  b|a − b2sup

x∈X e −λ1/abx

f3

1

ab x 

 |a  b|a − b2sup

y∈X e −λ1/aby

f4

1

ab y 

 |aba  b| sup

x,y∈X e −λ1/abx1/aby

f5

1

ab x 

1

ab y 

≤ f1  f2  |a  b|a − b2f3  f4  |aba  b|f5

≤ 2|a  b|a − b2 |aba  b|  2 max{f1, f2, f3, f4, f5}

 2|a  b|a − b2 |aba  b|  2f1, f2, f3, f4, f5

2.14

for eachf1, , f5 ∈ Z5

λ This implies that

C P

2 ≤ 2|a  b|a − b2 |aba  b|  2. 2.15 Letη be a real number such that

η/∈



0, 1,1− a

b ,

1− b

a ,

a − 1

1− b ,

b − 1

1− a ,

a

1− b ,

b

1− a



Now, letu ∈ X, ν ∈ Y be such that u  ν  1 and let {ξ n}n be a sequence of positive real numbers decreasing to 0 We define

f n x 

e λ1|η|ξ n ν, ifx 

1

a 

η

b ξ n u, or x 

1

b 

η

a ξ n u,

|a  b|

a  b e λ1|η|ξ n ν, ifx 

1

ab ξ n u, or x 

η

ab ξ n u,

|aba  b|

aba  b e λ1|η|ξ n ν, if x 

1 η

ab ξ n u,

2.17

Trang 7

for allx ∈ X Hence we have

e −λx f n x 

e 1|η|−|1/aη/b|λξ n , if x 

1

a 

η

b ξ n u,

e 1|η|−|1/bη/a|λξ n , if x 

1

b 

η

a ξ n u,

e 1|η|−|1/ab|λξ n , ifx  ab1 ξ n u,

e 1|η|−|η/ab|λξ n , ifx  ab η ξ n u,

e 1|η|−|1η/ab|λξ n , if x  1ab  η ξ n u,

0, otherwise

2.18

for allx ∈ X, so that f n ∈ X λ for all positive integersn, with

f n   max{e 1|η|−|1/aη/b|λξ n , e 1|η|−|1/bη/a|λξ n ,

e 1|η|−|1/ab|λξ n , e 1|η|−|η/ab|λξ n , e 1|η|−|1η/ab|λξ n }. 2.19

Letx0, y0∈ X be such that x0 ξ n u and y0 ηξ n u Then it follows from the definition of f nthat

C P

2f n , , f n  sup

x,y∈X e −λxy

f n

1

a x 

1

b y  f n

1

b x 

1

a y

− a  ba − b2



f n

1

ab x  f n

1

ab y

− aba  bf n

1

ab x 

1

ab y 

≥ e −λ1|η|ξ n e λ1|η|ξ n  e λ1|η|ξ n 2|ab|a − b2e λ1|η|ξ n |abab|e λ1|η|ξ n

 2|a  b|a − b2 |aba  b|  2,

2.20

so that

C P

2f n , , f n  ≥ 2|a  b|a − b2 |aba  b|  2. 2.21

If on the contraryC P

2 < 2|a  b|a − b2 |aba  b|  2, then there exists a δ > 0 such that

C P

2f n , , f n  ≤ 2|a  b|a − b2 |aba  b|  2 − δf n , , f n 2.22

Trang 8

for all positive integersn So it follows from 2.21 and 2.22 that

2|a  b|a − b2 |aba  b|  2 ≤ C P

2f n , , f n  ≤ 2|a  b|a − b2 |aba  b|  2 − δf n

2.23

for all positive integersn Since lim n→∞ ξ n  0, it follows from 2.19 that limn→∞ f n   1, so

the right-hand side of2.23 tends to 2|a  b|a − b2 |aba  b|  2 − δ as n→∞, whence

2|a  b|a − b2 |aba  b|  2 ≤ 2|a  b|a − b2 |aba  b|  2 − δ, 2.24 which is a contradiction Hence we haveC P

2  2|a  b|a − b2 |aba  b|  2.

Corollary 2.4 The operator C2:X λ →X2

λ is a bounded linear operator with

C2  2|a  b|a − b2 |aba  b|  2. 2.25

Proof The result follows from the proof ofTheorem 2.3

Acknowledgment

The authors would like to thank the referee for his/her useful comments

References

1 S Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ,

USA, 2002.

2 S Czerwik and K Dlutek, “Cauchy and Pexider operators in some function spaces,” in Functional

Equations, Inequalities and Applications, pp 11–19, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 2003.

3 M S Moslehian, T Riedel, and A Saadatpour, “Norms of operators in X λ spaces,” Applied Mathematics

Letters, vol 20, no 10, pp 1082–1087, 2007.

4 S.-M Jung, “Cubic operator norm on X λ space,” Bulletin of the Korean Mathematical Society, vol 44, no.

2, pp 309–313, 2007.

5 K.-W Jun and H.-M Kim, “The generalized Hyers-Ulam-Rassias stability of a cubic functional

equation,” Journal of Mathematical Analysis and Applications, vol 274, no 2, pp 867–878, 2002.

6 K.-W Jun, H.-M Kim, and I.-S Chang, “On the Hyers-Ulam stability of an Euler-Lagrange type cubic

functional equation,” Journal of Computational Analysis and Applications, vol 7, no 1, pp 21–33, 2005.

7 K.-W Jun and H.-M Kim, “On the stability of Euler-Lagrange type cubic mappings in quasi-Banach

spaces,” Journal of Mathematical Analysis and Applications, vol 332, no 2, pp 1335–1350, 2007.

... functional equation 1.8.

We will introduce linear operators which are constructed from the Euler-Lagrange- type cubic and the Pexiderization of the Euler-Lagrange- type cubic. .. Euler-Lagrange- type cubic functional equations1.7 and

1.8

Trang 3

Definition 1.2 The operators C P

1,... ∈ X, and B is symmetric for each fixed one variable and is additive for fixed two

variables

In 6, the authors introduced the following Euler-Lagrange- type cubic functional

Ngày đăng: 22/06/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN