1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article A Hilbert’s Inequality with a Best Constant Factor" doc

8 219 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 476,23 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2009, Article ID 820176, 8 pagesdoi:10.1155/2009/820176 Research Article A Hilbert’s Inequality with a Best Constant Factor Zheng Zeng1 and Zi-tian Xie2 1 Department of Mathematic

Trang 1

Volume 2009, Article ID 820176, 8 pages

doi:10.1155/2009/820176

Research Article

A Hilbert’s Inequality with a Best Constant Factor

Zheng Zeng1 and Zi-tian Xie2

1 Department of Mathematics, Shaoguan University, Shaoguan, Guangdong 512005, China

2 Department of Mathematics, Zhaoqing University, Zhaoqing, Guangdong 526061, China

Correspondence should be addressed to Zi-tian Xie,gdzqxzt@163.com

Received 6 February 2009; Revised 3 May 2009; Accepted 23 July 2009

Recommended by Yong Zhou

We give a new Hilbert’s inequality with a best constant factor and some parameters

Copyrightq 2009 Z Zeng and Z.-t Xie This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction

If p > 1, 1/p  1/q  1, a n, bn > 0 such that ∞ >∞

n1 a p n > 0 and ∞ >∞

n1 b q n > 0, then the

well-known Hardy-Hilbert’s inequality and its equivalent form are given by



n1



m1

ambn

m  n <

π

sin

π/p

∞



n1

a p n

1/p∞



n1

b n q

1/q



n1

∞

m1

am

m  n

p

< π

sin

π/p

p∞

n1

a p n



where the constant factors are all the best possible 1 It attracted some attention in the recent years Actually, inequalities1.1 and 1.2 have many generalizations and variants Equation1.1 has been strengthened by Yang and others  including integral inequalities 

2 11

Trang 2

In 2006, Yang gave an extension of2 as follows.

If p > 1, 1/p  1/q  1, r > 1, 1/r  1/s  1, t ∈ 0, 1, 2 − min{r, s}t  min{r, s} ≥ λ >

2 − min{r, s}t, such that ∞ > ∞n1 n p1−t2t−λ/r−1 a p n > 0, ∞ > ∞

n1 n q1−t2t−λ/s−1 b q n > 0,

then



n1



m1

ambn

m  n λ

< B

r − 2t  λ

r ,

s − 2t  λ

s



n1

n p1−t2t−λ/r−1 a p n

1/p∞



n1

n q1−t2t−λ/s−1 b q n

1/q

.

1.3

Bu, v is the Beta function.

In 2007 Xie gave a new Hilbert-type Inequality3 as follows

If p > 1, 1/p1/q  1, a, b, c > 0, 2/3 ≥ μ > 0, and the right of the following inequalities

converges to some positive numbers, then



m1



n1

ambn

n μ  a2m μ n μ  b2m μ n μ  a2m μ

< π

μ a  bb  cc  a

∞



n1

n 1−3μ/2p−1 a p n

1/p∞



n1

n 1−3μ/2q−1 b q n

1/q

.

1.4

The main objective of this paper is to build a new Hilbert’s inequality with a best constant factor and some parameters

In the following, we always suppose that

1 1/p  1/q  1, p > 1, a ≥ 0, −1 < α < 1,

2 both functions ux and vx are differentiable and strict increasing in n0− 1, ∞

andm0− 1, ∞, respectively,

3 ux/u α x, vx/v α x are strictly increasing in n0 − 1, ∞ and m0 − 1, ∞,

respectively.{unvm/u2n  2au nvm  v2

m u α

n v m α } is strict decreasing on n and m,

4 un  u n, un0  u0, un0− 1  vm0− 1  0, u∞  ∞, v∞  ∞, un 

un, vm  vm, vm0  v0, vm  v

m

Trang 3

2 Some Lemmas

Lemma 2.1 Define the weight coefficients as follows:

W

p, m : ∞

nn0

1

u2

n  2au nvm  v2

m

·v

αp−1

m

u α · un

v

ω

p, m :

∞

n o−1

1

u2x  2auxv m  v2

m

·v

αp−1

m

u α x ·

ux

v

mp−1 dx, 2.2



W

q, n : ∞

mm0

1

u2

n  2au nvm  v2

m

·u

αq−1

n

v α m

· v m

u



ω

q, n :

∞

m0 −1

1

u2

n  2au nv

y

 v2

y ·u

αq−1

n

v α

y · v



y

u

nq−1 dy, 2.4

then

W

p, m

< ω

p, m

 Kv

pα−2α−1 m

v

mp−1 , Wq, n<  ωq, n Ku qα−2α−1 n

u

nq−1 , 2.5

where

K 

∞

0

1  2aσ  σ2σ α



π

2√

a2− 1 sin απ a 

a2− 1α− 1

a a2− 1α

, if α /  0, a > 1,

πcscθcsc απ sinαθ, if α /  0, a  cos θ, 0 < θ < π,

1

a2− 1ln



a 

a2− 1, if α  0, a > 1, θcscθ, if α  0, a  cos θ, 0 < θ < π

2 ,

2.6

Trang 4

Proof Let fz  1/1  2az  z2z α   1/z − z1z − z2z α  then K  2πi/1 −

e −2απi Resf, z1  Resf, z2 if a > 1 then z1 −a −a2− 1, z2  −a a2− 1

K  2πi

1− e −2απi



−a −a2− 1−α

−2√a2− 1 



−a a2− 1−α

2√

a2− 1

2√

a2− 1 sin απ

⎣a 

a2− 1α− 1

a 

a2− 1α

⎦,

2.7

if a  cos θ 0 < θ < π/2, then z1 −e iθ , z2 −e −iθ

K  2πi

1− e −2απi

1

−2i sin θ−e iθα  1

2i sin θ−e −iθα

 πcscθcscαπ sinαθ. 2.8

On the other hand, Wp, m < ωp, m Setting ux  v mσ, then ωp, m  Kv m pα−2α−1 /

v

mp−1 Similarly,  Wq, n <  ωq, n  Ku qα−2α−1 n /unq−1

Lemma 2.2 For 0 < ε < min{p, p1 − α} one has

∞ 0

1  2aσ  σ2σ αε/p  K  o1 ε −→ 0. 2.9

Proof.



∞

0

1

1  2aσ  σ2σ αε/p dσ − K



≤





1 0

σ −α

1− σ −ε/p

1 2aσ  σ2





 







∞ 1

σ −α

1− σ −ε/p

1 2aσ  σ2







≤





1 0

σ −α

1− σ −ε/p





 



∞ 1

σ −2−α

1− σ −ε/p







1− α1 − 1

1− α − ε/p



 1 α1 − 1

1 α  ε/p



 −→ 0 for ε −→ 0.

2.10

The lemma is proved

Trang 5

Lemma 2.3 Setting w n  u n (or vm  and w0  n0(or m0, resp.), then k > 0 {τ w /τ k

w } is strictly

decreasing, then

N



ww0

τ w

τ k w



N

w0

τx

τ k x dx  A. 2.11

There A ∈ 0, τ w0/τ k

w0, for any N).

Proof We have

N

w0

τx

τ k x dx <

N



ww0

τ w

τ w k

 τ w0

τ w k0

 N

ww0 1

τ w

τ w k

< τ



w0

τ w k0



N

w0

τx

τ k x dx. 2.12 Easily, A had up bounded when N → ∞.

3 Main Results

Theorem 3.1 If a n > 0, bn > 0, 0 < ∞

n1 v pα−2α−1 m /v m p−1

a p n < ∞, 0 < ∞

nn0u qα−2α−1 n /

u

nq−1

b q n < ∞, then



nn0



mm0

ambn

u2

n  2au nvm  v2

m

< K

∞

mm0

v pα−2α−1 m

v

mp−1 a p m

1/p∞

nn0

u qα−2α−1 n

u

nq−1 b q n

1/q

, 3.1



nn0

u pαp−2α−1 n un

∞

mm0

am

u2

n  2au nvm  v2

m

p

< K p



mm0

v pα−2α−1 m

v

mp−1 a p m. 3.2

K is defined by Lemma 2.1

Proof By H ¨older’s inequality12 and 2.5,

J : 



nn0



mm0

ambn

u2n  2au nvm  v2

m

 ∞

nn0



mm0

1

u2

n  2au nvm  v2

m

·v

α/q m

u α/p n

· un1/p

v

m1/q am·u

α/p n

v α/q m

·v m 1/q

u

n1/p bn

∞

mm0

Wp, ma p m

1/p∞

nn0



Wq, nb q n

1/q

< K

∞

mm

v m pα−2α−1

v

mp−1 a p m

1/p∞

nn

u qα−2α−1 n

u

nq−1 b n q

1/q

,

3.3

Trang 6

setting b n  u pα−2αp−1 n un∞mm0am/u2

n  2au nvm  v2

mp−1 > 0 By3.1 we have



nn0

u qα−2α−1 n

u

nq−1 b q n ∞

nn0

u pα−2αp−1 n un

 ∞



mm0

am

u2

n  2au nvm  v2

m

p

 J ≤ K

∞

mm0

v pα−2α−1 m

v

mp−1 a p m

1/p∞

nn0

u qα−2α−1 n

u

nq−1 b q n

1/q

.

3.4

By 0 <∞

nn0u qα−2α−1

n /unq−1 b q

n < ∞ and 3.4 taking the form of strict inequality, we have

3.1 By H¨older’s inequality12, we have

J 



nn0



u −α2α/q1/q n u

n−11/q∞

mm0

am

u2

n  2au nvm  v2

m



u α−2α/q−1/q n bn

u

n1−1/q

∞

nn0

u pα−2αp−1 n un



mm0

am

u2

n  2au nvm  v2

m

p1/p∞

nn0

u qα−2α−1 n

u

nq−1 b q n

1/q

.

3.5

as 0 < {∞

nn0u qα−2α−1

n /unq−1 b q

n}1/q < ∞ By 3.2, 3.5 taking the form of strict inequality,

we have3.1

Theorem 3.2 If α  0, then both constant factors, K and K p of3.1 and 3.2, are the best possible

Proof We only prove that K is the best possible If the constant factor K in 3.1 is not the best

possible, then there exists a positive H with H < K, such that

J < H

∞

mm0

v m−1

v

mp−1 a p m

1/p∞

nn0

u−1n

u

nq−1 b q n

1/q

For 0 < ε < min{p, q}, setting  am  v m −ε/p v m , bn  u −ε/q n un, then

∞

mm

v m−1

v

mp−1 a p m

1/p∞

nn

u−1n

u

nq−1 b q n

1/q



∞

mm

vm

v1εm

1/p∞

nn

un

u1εn

1/q

. 3.7

Trang 7

On the other handux  σvy and vy  τ,



mm0



nn0

u −ε/p n un v m −ε/q v m

u2

n  2au nvm  v2

m

>

∞

m0

∞

n0

u −ε/p xuxdx

u2x  2auxvy

 v2

y

vy −ε/q v

y

dy



∞

m0

∞

u0/vy

σ −ε/p dσ

σ2 2aσ  1

vy −1−ε v

y

dy



∞

v0

∞ 0

σ −ε/p dσ

σ2 2aσ  1

τ −1−ε dτ

∞

v0

u0 0

σ −ε/p dσ

σ2 2aσ  1

τ −1−ε dτ

≥ K  o1

∞

v0

τ −1−ε dτ −

∞

v0

τ−1

u0 0



σ −ε/p dσ

 K  o1

∞

v0

τ −1−ε dτ − u

1−ε/p

0 v0−1ε/p

1 − ε/p2

 K  o1

∞

v0

τ −1−ε dτ − O 1.

3.8

By3.6, 3.7, 3.8, andLemma 2.3, we have

K  o1 − ∞O1

v0τ −1−ε dτ < H

∞

mm0



vm /v m1ε

∞

v0τ −1−ε dτ

1/p∞

nn0



un /u1εn 

∞

v0τ −1−ε dτ

1/q

K  o1 −∞O1

v0τ −1−ε dτ < H



1∞O1

v0τ −1−ε dτ

1/p

1∞O1

v0τ −1−ε dτ

1/q

We have K ≤ H, ε → 0 This contracts the fact that H < K.

References

1 G H Hardy, J E Littlewood, and G P´olya, Inequalities, Cambridge University Press, Cambridge, UK,

1952

2 B C Yang, “On Hilbert’s inequality with some parameters,” Acta Mathematica Sinica Chinese Series,

vol 49, no 5, pp 1121–1126, 2006

3 Z Xie, “A new Hilbert-type inequality with the kernel of -3μ-homogeneous,” Journal of Jilin University.

Science Edition, vol 45, no 3, pp 369–373, 2007.

4 Z Xie and B Yang, “A new Hilbert-type integral inequality with some parameters and its reverse,”

Kyungpook Mathematical Journal, vol 48, no 1, pp 93–100, 2008.

5 B Yang, “A Hilbert-type inequality with a mixed kernel and extensions,” Journal of Sichuan Normal

University Natural Science, vol 31, no 3, pp 281–284, 2008.

6 Z Xie and Z Zeng, “A Hilbert-type integral with parameters,” Journal of Xiangtan University Natural

Science, vol 29, no 3, pp 24–28, 2007.

Trang 8

7 W Wenjie, H Leping, and C Tieling, “On an improvenment of Hardy-Hilbert’s type inequality with

some parameters,” Journal of Xiangtan University Natural Science, vol 30, no 2, pp 12–14, 2008.

8 Z Xie, “A new reverse Hilbert-type inequality with a best constant factor,” Journal of Mathematical

Analysis and Applications, vol 343, no 2, pp 1154–1160, 2008.

9 B Yang, “On an extended Hardy-Hilbert’s inequality and some reversed form,” International

Mathematical Forum, vol 1, no 37–40, pp 1905–1912, 2006.

10 Z Xie, “A Hilbert-type inequality with the kernel of irrational expression,” Mathematics in Practice and

Theory, vol 38, no 16, pp 128–133, 2008.

11 Z Xie and J M Rong, “A new Hilbert-type inequality with some parameters,” Journal of South China

Normal University Natural Science Edition, vol 120, no 2, pp 38–42, 2008.

12 J Kang, Applied Inequalities, Shangdong Science and Technology Press, Jinan, China, 2004.

...

u1εn

1/q

. 3.7

Trang 7

On the other handux...

3.3

Trang 6

setting b n  u pα−2αp−1 n un∞mm0am/u2

n... 0.

2.10

The lemma is proved

Trang 5

Lemma 2.3 Setting

Ngày đăng: 22/06/2014, 02:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN