1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Approximation Methods for Common Fixed Points of Mean Nonexpansive Mapping in Banach Spaces" ppt

7 214 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 467,64 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2008, Article ID 471532, 7 pagesdoi:10.1155/2008/471532 Research Article Approximation Methods for Common Fixed Points of Mean Nonexpansive Mapping in Banach Spaces Zhaohui Gu 1 a

Trang 1

Volume 2008, Article ID 471532, 7 pages

doi:10.1155/2008/471532

Research Article

Approximation Methods for Common Fixed Points

of Mean Nonexpansive Mapping in Banach Spaces

Zhaohui Gu 1 and Yongjin Li 2

1 Department of Foundation, Guangdong Finance and Economics College, Guangzhou 510420, China

2 Institute of Logic and Cognition, Department of Mathematics, Sun Yat-Sen University,

Guangzhou 510275, China

Correspondence should be addressed to Yongjin Li, stslyj@mail.sysu.edu.cn

Received 17 October 2007; Accepted 2 January 2008

Recommended by Tomonari Suzuki

LetX be a uniformly convex Banach space, and let S, T be a pair of mean nonexpansive mappings.

In this paper, it is proved that the sequence of Ishikawa iterations associated withS and T converges

to the common fixed point ofS and T.

Copyright q 2008 Z Gu and Y Li This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction and preliminaries

LetX be a Banach space and let S, T be mappings from X to X The pair of mean nonexpansive

mappings was introduced by Bose in1:

Sx − Ty ≤ ax − y  bx − Sx  y − Ty cx − Ty  y − Sx, 1.1 for allx, y ∈ X, a, b, c ∈ 0, 1, a  2b  2c ≤ 1.

The Ishikawa iteration sequence{xn} of S and T was defined by

y n1− β nx n  β n Sx n ,

wherex0 ∈ X, αn , β n ∈ 0, 1 The recursion formulas 1.2 were first introduced in 1994

by Rashwan and Saddeek2 in the framework of Hilbert spaces

In recent years, several authorssee 2 6 have studied the convergence of iterations to

a common fixed point for a pair of mappings Rashwan has studied the convergence of Mann iterations to a common fixed pointsee 5 and proved that the Ishikawa iterations converge

Trang 2

to a unique common fixed point in Hilbert spacessee 2 Recently, ´Ciri´c has proved that if the sequence of Ishikawa iterations sequence{xn} associated with S and T converges to p, then p

is the common fixed point ofS and T see 7 In 4,6, the authors studied the same problem

In1, Bose defined the pair of mean nonexpansive mappings, and proved the existence of the fixed point in Banach spaces In particular, he proved the following theorem

Theorem 1.1 see 1 Let X be a uniformly convex Banach space and K a nonempty closed convex

subset of X, S : K→K and T : K→K are a pair of mean nonexpansive mappings, and c / 0 Then,

i S and T have a common fixed point u;

ii further, if b / 0, then

a u is the unique common fixed point and unique as a fixed point of each S and T,

b the sequence {xn} defined by x1 Sx0, x2 Tx1, x3 Sx2 , for any x0 ∈ K, converges

strongly to u.

It is our purpose in this paper to consider an iterative scheme, which converges to a common fixed point of the pair of mean nonexpansive mappings Theorem 2.1 extends and improves the corresponding results in1

2 Main results

Now we prove the following theorem which is the main result of this paper

Theorem 2.1 Let X be a uniformly convex Banach space, S : X→X and T : X→X are a pair of mean

nonexpansive with a nonempty common fixed points set; if b > 0, 0 < α ≤ α n ≤ 1/2, 0 ≤ β n ≤ β < 1,

then the Ishikawa sequence {xn} converges to the common fixed point of S and T.

Proof First, we show that the sequence {xn} is bounded For a common fixed point p of S and

T, we have

Tx − p  Tx − Sp

≤ ax − p  bx − Tx  p − Sp cx − Sp  p − Tx

≤ ax − p  bx − p  p − Tx cx − Sp  p − Tx.

2.1

LetL  a  b  c/1 − b − c, by a  2b  2c ≤ 1, it is easy to see that a  b  c ≤ 1 − b − c, thus

0≤ L ≤ 1 and Tx − p ≤ Lx − p ≤ x − p.

Similarly, we haveSx − p ≤ Lx − p ≤ x − p,

xn1 − p  1 − αn

x n  αn Ty n − p

1− αn

x n − p αnTy n − p

≤1− αnxn − p  αnTyn − p

≤1− αnxn − p  αn L yn − p

≤1− α nxn − p  αn1− β n

x n  β n Sx n − p

1− αnxn − p  αn1− β n

x n − p β nSx n − p

≤1− αnxn − p  αn

1− β n xn − p  αn β n Sxn − p

≤1− αnxn − p  αn

1− β n xn − p  αn β n xn − p

1− αn αn1− β n αn β n xn − p  xn − p.

2.2

Trang 3

xn1 − p ≤ xn − p ≤ xn−1 − p ≤ ··· ≤ x0− p. 2.3 Hence,{x n} is bounded

Second, we show that

lim

We recall that Banach spaceX is called uniformly convex if δε > 0 for every ε > 0, where the

modulusδε of convexity of X is defined by

δε  inf1−

x  y2  : x ≤ 1, y ≤ 1, x − y ≥ ε, 2.5 for everyε with 0 ≤ ε ≤ 2 It is easy to see that Banach space X is uniformly convex if and only

if for anyx n , y n ∈ BX  {x | x ≤ 1}, xn  yn → 2 implies xn − yn → 0.

Assume that limn→∞ xn − Tyn / 0, then there exist a subsequence {xn k } of {xn} and a

real numberε0> 0, such that

xn k − Tyn k  ≥ ε0, k  1, 2, 3, 2.6

On the other hand, for a common fixed pointp of T and S, we have

xn k − Ty n k  ≤ xn k − p  Tyn k − p

xn k − p  Lyn k − p

xn k − p  L1 − β n k

x n k  βn k Sx n k − p

xn k − p  L1 − β n k

x n k − p β n kSx n k − p

xn k − p  1 − β n k

L xn k − p  β n k L Sxn k − p

≤11− β n kL  β n k L2xn k − p

≤ 1  Lxn k − p ≤ 2xn k − p.

2.7

Thus,

xn k − p ≥ 1

2xn k − Ty n k  ≥ ε0

Because

Tyn − p ≤ yn − p ≤ 1 − β n

x n  β n Sx n − p

1− β n

x n − p β nSx n − p ≤ 1 − β n xn − p  β n Sxn − p

≤1− β n xn − p  β n xn − p ≤ xn − p, 2.9

we know{x n } is bounded, then there exists M > 0, such that x n − p ≤ M Thus, Ty n − p ≤

xn − p ≤ M.

Trang 4

Furthermore, we have







x n k − p

xn k − p − Ty n k − p

xn k − p 

xn k − Tyn k

xn k − p ≥ ε1

From







x n k − p

xn k − p 1,







Ty n k − p

xn k − p ≤ L ≤1, 2.11

and the fact thatX is uniformly convex Banach space, there exists δ > 0, such that







x n k − p

xn k − p  Ty n k − p

Thus,

xn k1− p  1 − αn k



x n k  αn k Ty n k − p

≤1− 2αn k xn k − p  αn k

x n k − p αn kTy n k − p

≤1− 2α n k xn k − p  αn k xn k − p· x n k − p

xn k − p  Ty n k − p

xn k − p

≤1− 2αn k xn k − p  2 − δαn k xn k − p ≤ 1 − δαn k xn k − p

xn k − p − δαn k xn k − p ≤ xn k − p − δαε1.

2.13

Using2.3, we obtain that

xn k1− p ≤ xn k − p − δαε1≤xn k−1− p − δαε1

xn k−2− p − δαε1≤ · · · ≤xn k−11− p − δαε1

xn k−1 − p − 2δαε1.

2.14

So

xn k − p ≤ xn k−1 − p − δαε1≤xn k−2 − p − 2δαε1≤ · · · ≤xn1 − p − k − 1δαε1 2.15

Letk→∞, then we have x n k − p < 0 It is a contradiction Hence, lim n→∞xn − Tyn  0.

Third, we show that

lim

Since

xn − Sxn ≤ xn − Tyn  Tyn − Sxn

xn − Ty n  axn − y n  bxn − Sx n  yn − Ty n

 cxn − Tyn  yn − Sxn

 1  cxn − Tyn  axn − yn  bxn − Sxn

 byn − Tyn  cyn − Sxn

 1  cxn − Tyn  a1 − β n

x n  β n Sx n − xn

 bxn − Sx n  b1 − β n

x n  β n Sx n − Ty n

 c1− β n

x n  β n Sx n − Sxn

≤ 1  cxn − Tyn  aβ n xn − Sxn

 bxn − Sxn  bβ n xn − Sxn  bxn − Tyn  c1 − β n xn − Sxn

 1  b  cxn − Tyn  aβ n  b  bβ n  c1− β n xn − Sxn,

2.17

Trang 5

we have



1− aβ n − b − bβ n − c1− β n xn − Sxn ≤ 1  b  cxn − Tyn. 2.18 LetM1 1 − aβ n − b − bβ n − c1 − β n, then

M1 1 − aβ n − b − bβ n − c  cβ n  1 − b − c − a  b − cβ n

≥ a  b  c − a  b − cβ n  a  b1− β n c1 β n

≥ a  b1 − β  c > 0.

2.19

So

xn − Sxn ≤ 1  b  c M

Using2.4, we get that

lim

Forth, we show that if the Ishikawa sequence{xn} converges to some point p ∈ X, then

p is the common fixed point of S and T By

y n1− β nx n  β n Sx n ,

we havex n −Tyn  1/αnxn1 −xn Since {xn} is a convergent sequence, we get lim n→∞ xn

Ty n  0 It is easy to see that xn − yn  β n xn − Sxn and Sxn − yn  1 − β n xn − Sxn.

On the other hand,

yn − Tyn  1 − β n

x n  β n Sx n − Tyn ≤ 1 − β n xn − Tyn  β n Sxn − Tyn 2.23

By1.1, we obtain

Tyn − Sxn ≤ axn − yn  bxn − Sxn  yn − Tyn  cxn − Tyn  yn − Sxn

≤ aβ n xn − Sxn  bxn − Sxn  b1 − β n xn − Tyn

 bβ n Sxn − Tyn  cxn − Tyn  c1 − β n xn − Sxn

aβ n  b  c1− β n xn − Sx n

b1− β n cxn − Tyn  bβ n Sxn − Tyn.

2.24 Since

we get

Tyn − Sxn ≤ b1 − β n

 c  aβ n  b  c1− β n xn − Tyn

bβ n  aβ n  b  c1− β n Sxn − Tyn. 2.26

Trang 6



1− b − c − a  b − cβ n Tyn − Sx n ≤ b1 − β n

 c  aβ n  b  c1− β n xn − Ty n.

2.27 LetM2 1 − b − c − a  b − cβ n, Since 0≤ β n ≤ β < 1, we have

M2≥ a  b  c − a  b − cβ n ≥ a  b1− β n c1 β n≥ a  b1 − β  c > 0. 2.28

It is easy to see that

b1− β n c  aβ n  b  c1− β n> 0. 2.29 Note that limn→∞ x n − Ty n  0, then we get

lim

n→∞ Sxn − Tyn  0, lim

So limn→∞xn − yn  lim n→∞ β n Sxn − xn  0.

Letp  lim n→∞ x n, then limn→∞ y n  p, lim n→∞ Sx n  p, lim n→∞ Ty n  p By 1.1, we have

Sxn − Tp ≤ axn − p  bxn − Sxn  p − Tp  cxn − Tp  p − Sxn 2.31

Letn→∞, then we get

Sinceb  c < 1, it follows that

Similarly, we can prove thatSp  p So p is the common fixed point of S and T.

Finally, we show that{Sxn} is a Cauchy sequence For any m, n ∈ N,

Sxn − Sxnm ≤ Sxn − Tynm  Sxnm − Tynm

≤ axn − y nm  bxn − Sx n  ynm − Ty nm

 cxn − Tynm  ynm − Sxn  Sxnm − Tynm

≤ axn − Sxn  Sxn − Sxnm  Sxnm − ynm

 bxn − Sxn  ynm − Tynm

 cxn − Sxn  Sxn − Sxnm

Sxnm − Ty nm  ynm − Sx nm

Sxnm − Sxn  Sxnm − Tynm.

2.34

Sinceb > 0, thus we get 1 − a − 2c > 0 Simplify, then we have

Sxn − Sxnm ≤ Axn − Sxn  Bynm − Tynm

 Cynm − Sxnm  DSxnm − Tynm, 2.35 whereA  a  b  c/1 − a − 2c ≥ 0, B  b/1 − a − 2c ≥ 0, C  a  c/1 − a − 2c ≥ 0, and

D  1  c/1 − a − 2c ≥ 0 By 2.16 and 2.30, we know that

xn − Sxn −→ 0, ynm − Tynm −→ 0, Sxnm − Tynm −→ 0. 2.36

Trang 7

So it is easy to see thatynm − Sxnm→0 Thus, Sxn − Sxnm→0, that is {Sxn} is a Cauchy

sequence Hence, there existsp, such that p  lim n→∞ Sx n We know thatp  lim n→∞ x nandp

is the common fixed point ofS and T This completes the proof of the theorem.

Acknowledgment

The work was partially supported by the Emphases Natural Science Foundation of Guangdong Institution of Higher Learning, College and Universityno 05Z026

References

1 S C Bose, “Common fixed points of mappings in a uniformly convex Banach space,” Journal of the

London Mathematical Society, vol 18, no 1, pp 151–156, 1978.

2 R A Rashwan and A M Saddeek, “On the Ishikawa iteration process in Hilbert spaces,” Collectanea

Mathematica, vol 45, no 1, pp 45–52, 1994.

3 V Berinde, “On the convergence of the Ishikawa iteration in the class of quasi contractive operators,”

Acta Mathematica Universitatis Comenianae, vol 73, no 1, pp 119–126, 2004.

4 P.-E Maing´e, “Approximation methods for common fixed points of nonexpansive mappings in Hilbert

spaces,” Journal of Mathematical Analysis and Applications, vol 325, no 1, pp 469–479, 2007.

5 R A Rashwan, “On the convergence of Mann iterates to a common fixed point for a pair of mappings,”

Demonstratio Mathematica, vol 23, no 3, pp 709–712, 1990.

6 Y Song and R Chen, “Iterative approximation to common fixed points of nonexpansive mapping

se-quences in reflexive Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol 66, no 3,

pp 591–603, 2007.

7 Lj B ´Ciri´c, J S Ume, and M S Khan, “On the convergence of the Ishikawa iterates to a common fixed

point of two mappings,” Archivum Mathematicum, vol 39, no 2, pp 123–127, 2003.

Ngày đăng: 22/06/2014, 00:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN