1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Thread Technologies by JS.Noho_2 doc

10 110 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,39 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

During these automated threading passes, the tool precisely traverses down the bar’s length, is rapidly withdrawn and moved back to its start point, then fed more deeply beginning anothe

Trang 1

associated ‘mass effect’  meant that the dies could be 

through-hardened – which gave them an overall ‘bulk 

hardness’  of  greater  than  HSS.  Today,  basically  dies 

are either manufactured from micro-grained HSS, or 

coated cemented carbide. 

Solid dies (Fig. 99a), do not have any means to com-

pensate for die wear, whereas, their split-die nut coun-terparts (Fig. 99b-left), can be manually-adjusted. This 

adjustment of the die is achieved by turning a centrally 

mounted  grub-screw  in  the  stock  body,  which  along 

with the fixing screws can be made to open, or close 

on the shaft to be threaded. In this manner, achieving 

the correct thread tolerance, or ‘play’ for the desired 

fitment  of  its  associated  mating  nut.  It  is  also  usual 

practice, to use a suitable die lubricant, to facilitate in 

the thread’s production while improving surface finish 

and prolonging the die’s life – as excessive friction oc-curs during this type of threading process. 

The  major  disadvantage  of  using  the  solid-type 

threading dies is that they either have to be unscrewed 

from  the  threaded  workpiece,  or  rewound  from  the 

thread,  using  up  unproductive  time  elements,  this 

being  particularly  important  for  large  batch  runs,  or 

in  a  continuous  production  environment. 

Self-open-ing dies0  (i.e.  not  depicted)  have  been  utilised  for 

many years on: capstan and turret lathes, single- and 

multi-spindle automatics and so on, for cutting exter-nal  threads.  Several  types  of  self-opening  die  heads 

are available, ranging from: radial, tangential, or cir-cular  arrangement  of  the  multi-point  cutting  inserts 

and thread chasers. In most cases, it is usual for the 

  ‘Mass effect’ , is related to the component’s ‘ruling section’. For 

example, if the part has a large cross-sectional area, when it is 

quenched from the hardening temperature zone (i.e. this can 

be  found  from  its  associated  thermal equilibrium diagram – 

for the present), it will not exceed the ‘critical cooling velocity’

and only a partial martensitic state occurs. This is because the 

quench media used  could  not sufficiently  drastically  reduce 

the part’s temperature with an incomplete atomic transforma-tion occurring and in so doing, the heat-treated component 

will retain some austenite in the matrix. For this reason, large 

holes (e.g. designed into in through-hardened Sine-bars) are 

often strategically designed in these larger component regions. 

Moreover, in many cases the larger component cross-sections 

are  reduced,  so  that  the ‘mass effect’ does  not  occur  –  apart 

from the obvious factor of relieving weight, etc. 

0  Self-opening dies, are often termed ‘Thread chasing die heads’ , 

whereas  in  reality  a  thread  is  only  ‘chased’  once  the  main 

thread form has initially been cut. Thus chasing is employed 

to give the required fit and finish to the final thread form.

die-head cutting elements to be preset to take firstly 

a  roughing  cut,  followed  by  finishing  cut/chasing  of  the threads down the bar. At the end of the threaded  section,  these  self-opening  dies  will  automatically  open  and  can  then  be  speedily  withdrawn  from  the  threaded  portion  of  the  bar.  These  self-opening  dies  can be set to give the correct amount of tolerance, con- trolling the ‘play’ on the thread. Moreover, it is pos-sible to fit different thread sizes and forms into the die  head, for more universal threading applications. Both  the  radial  and  tangential  threading  elements,  create  less  tool  flank  contact  and  frictional  rubbing  on  the  cut thread. 

5.5 Thread Turning –

Introduction

On conventional engine-/centre-lathes, a single-point  thread cutting tool (Fig. 100), has a synchronised and  combined linear and rotary kinematic motion for its 

Figure 100 External and internal threading tool holders and

in-serts [Courtesy of Seco Tools]

.

Trang 2

threading insert. This insert is connected to the lead-screw (i.e normally having a very accurately-hardened 

and ground Acme form) which is precisely synchro-nised  to  that  of  the  headstock’s  rotation.  On  a  CNC 

turning  centre,  or  similar,  this  linear  motion  is 

reli-ant on the precision and accuracy of the recirculating 

ballscrew  coupled  to  the  programmed  cutterpath.  In 

this manner, the threading insert being rigidly held in 

either the tool post, or turret, generates a spiral groove 

which when at full depth creates a screwthread of the 

desired pitch and helix angle. During successive tra-verse feeding passes (i.e. to prescribed depths) along 

the  workpiece  the  thread  is  cut.  A  typical  thread  is 

routinely produced on CNC turning centres, using its 

fixed/canned  cycles  (i.e.  ‘bespoke  software’).  During 

these  automated  threading  passes,  the  tool  precisely 

traverses down the bar’s length, is rapidly withdrawn 

and  moved  back  to  its  start  point,  then  fed  more  deeply  beginning  another  threading  pass  down  the  same helical groove, this process being repeated until  full thread depth/profile is accomplished. In order to  obtain a consistent thread pitch on the workpiece, the  feedrate along the threaded portion must exactly co-incide.  The  thread  form  is  dependent  upon  the  pro-filed geometry of the thread cutting insert. In order to  achieve the required final thread profile, the feedrate  must be considerably larger than is normally utilised  for conventional turning operations. 

Any  V-form  thread  point  angle  geometry,  is  not 

an  ideal  edge  shape  for  the  production  of  machined  threads if the insert is fed in normal to the workpiece’s  axis  of  rotation  (i.e.  radial/plunge-fed).  Chip  control  here will be compromised, as each flank of the V-form  thread gets successively deeper. This narrowing of the 

Figure 101 Screwcutting

tech-niques on turning centres and

suggest-ed methods for improvsuggest-ed chip control [Courtesy of Sandvik Coromant]

Trang 3

V-shaped threading insert (i.e. see Fig. 103ai), creates 

high localised forces and stresses, which will tend to 

tear,  rather  than  cut  the  final  V-form  thread  profile. 

In order to minimise these potential high force/shear 

components when radial/plunge-cutting a thread, the 

radial  infeed  passes  are  progressively  reduced  with 

increasing  thread  depth.  The  techniques  of  V-form 

thread production by radial infeed techniques will be 

the subject of the next section

5.5.1 Radial Infeed Techniques

Utilising  single-point  threading  inserts  (i.e.  see  Fig. 

104, where a typical sequence of threading passes are 

depicted  –  as  the  V-form  thread  profile  is  partially 

formed), several different techniques of thread turning 

are utilised today, they include:

Radial infeed (Fig. 101 – top-left) – being the most 

common method, where the threading insert is fed 

at 90° to the workpiece’s rotational axis. The mate-rial  being  removed  on  both  sides  of  the  tool’s 

V-form flanks – producing a ‘soft’ chip-forming action 

giving uniform wear to both flanks of the insert,

NB  Here  the  V-form  threading  insert  geometry 

forms  both  flanks  with  lighter  cuts  as  the  thread 

depth progressively increases

Flank infeed (Fig. 103aii) – is often known as the 

‘half-angle screwcutting technique’ ,  mainly  utilised 

on  a  conventional  engine-/centre-lathe.  Here,  the 

left-hand  flank  is  formed  by  the  tool’s  V-form 

ge-

ometry, while the right-hand thread flank is gener-ated  by  successive  passes,  as  the  tool  is  fed  down 

the  face  at  half  the  thread’s  included  angle.  Chip 

control is improved with all flank infeed techniques 

over  ‘plunging’ ,  enabling  the  chip  to  be  vectored 

away  from  the  previously  cut  surface  (i.e  see  Fig. 

101 – middle, where the chips can be steered away 

from the flank),

NB  This  ‘half-angle technique’ producing  the 

thread’s right flank, is generated by the tool’s right-hand flank – which due to frictional effects, creates  

here a more pronounced wear rate on the cutting 

edge resulting in a poor surface finish

Modified flank infeed (Fig. 101top-middle left) – in 

this cutting action, the tool is fed to depth in suc- cessive passes at a slightly reduced angle (i.e. nor-mally  ranging  from  1°  to  5°).  This  screwcutting  technique provides an improved flank surface fin- ish – compared to the two previous methods, par-ticularly on the either less hard, or for more ductile 

workpiece materials. Modified flank infeed methods 

are recommended rather than radial infeeding for 

larger  threads,  due  to  contact  on  this  long  flank 

length which would otherwise result in vibrational  effects  being  superimposed  (i.e  chatter)  onto  the   final thread form,

NB  If  the  workpiece  material’s  characteristics 

include  potential  machining  work-hardening  problems,  then  flank  infeed  techniques  should  be  avoided, 

Incremental feeding (Fig. 101 – top-middle right) – 

if the thread form is very large, then the incremen-tal thread feeding strategy is normally utilised.  These  same  radial  infeed  thread  production 

tech-niques are used for the manufacture of internal threads

(Fig.  102a),  by  either  ‘Pull-threading’ –  depicted  in 

‘A’ , where the thread form originates from the inter-nal undercut, as opposed to ‘Push threading’ – shown 

in ‘B’ – being toward say, an undercut. In both cases 

of thread production, the modified flank infeed tech-niques are employed

NB  Threads  manufactured  by  method  ‘A’  allow  for 

excellent  evacuation  of  the  chips  –  being  an  ideal 

technique for ‘blind holes’. Conversely, in case ‘B’ , the 

swarf would otherwise simply ‘bird’s nest’ in such a  hole, unless a through hole is present, as is depicted 

in ‘B’. 

If thread forms are based upon square threads, or their  modified  trapezoidal  forms:  Buttress,  or  Acme  (i.e.  see Fig. 95i – for examples of these thread profiles), it 

  Incremental feeding,  is  sometimes  termed  the  ‘Alternating flank’ technique, it has the advantage of imparting a uniform 

wear to both of the cutting insert’s V-form flanks, thereby sig-nificantly increasing the tool life. 

  ‘Bird

nesting’ , is a term that refers to the rotational entangle-ment and build-up of work-hardened swarf at the bottom of 

a  ‘blind  hole’ ,  which  can  create  some  problems  in  internal  thread production. 

Trang 4

Figure 102 External and internal threading operations and the effect that the helix has as the diameter changes – for a given

pitch [Courtesy of Sandvik Coromant]

.

Trang 5

is advisable to pre-machine the thread with a groov-ing  tool  –  with  the  tool’s  width  beis advisable to pre-machine the thread with a groov-ing  the  equivalent 

of the thread’s root spacing dimension. Not only does 

this pre-machining strategy of employing a grooving 

tool  reduce  the  number  of  threading  passes  to  just 

flank finishing, the tool can have a chip-breaker pres-

ent during the rough machining stage to effectively re-move the bulk stock and its associated swarf. 

5.5.2 Thread Helix Angles,

for Single-/Multi-Start Threads

The fundamental basis underpinning any thread form 

is the helix angle, which in this case is denoted by the 

Greek symbol ‘ϕ’ – as schematically illustrated in Fig. 

102b.  One  way  of  describing  how  the  helix  angle’s 

geometry  is  created,  is  to  imagine  that  a  right-angle 

triangle  is  formed  by  a  thin  wire  which  has  been 

unwound  from  a  parallel  cylindrical  shaft,  whose 

 diameter equates to its ‘effective diameter’. Then, this 

unwound wire length (i.e. πD) would be its circumfer-ence, acting as a base for the triangle (Fig. 102b). The 

perpendicular height of right-angled triangle is equal 

to the pitch  ‘p’ , or the lead 

 – in the case of a single-start thread. The angle that the hypotenuse makes with 

the base is its helix angle

‘ϕ’. From the schematic dia-gram in Fig. 101c, if the pitch ‘p’ remains constant and 

the diameter ‘D  ’ is decreased (i.e. ‘D  ’ → ‘D ’), then the 

helix angle proportionally increases (i.e. ‘ϕ  ’ → ‘ϕ ’). 

In the case of multi-start threads, the pitch and the 

lead differ, as shown in Fig. 106c. In this illustration for 

the cutting the triple-start thread, the usual approach 

to its manufacture is for the three successive starts to 

be  individually  completed  to  form  the  ‘triple-start’ , 

with  each  start  being  angularly  displaced  120°  with 

respect to each other. Alternatively, if one start is be-gun with the first threading pass, then the second start 

is similarly machined and so on – for the number of 

starts required, then the threading insert is advanced 

 

‘Pitch’ – can be defined as the distance between correspond-ing points on adjacent threads, normally expressed in metric 

units as ‘mm’ , or in Imperial units as threads per inch.

  ‘Lead’  –  being  defined  as  the  axial distance through  which 

a  point on  the  thread  advances during  one revolution of  the 

thread ×. This helix angle ‘ϕ’ is also known as its ‘lead angle’

NB Both the pitch and the lead are identical for single-start

threads.

to a deeper thread depth and the process is repeated  until the full thread form has been completed. As pre-viously  mentioned,  the  pitch  is  not  the  same  as  the  lead for multi-start threads and the lead can be easily  calculated as follows:

Lead = np

Where:

n = number of starts,

p = pitch (mm).

For example, in the case of the triple-start thread illus-trated in Fig. 106c, for say, a V-form metric thread of 

6 mm pitch, then the lead will be: 3 × 6 mm = 18 mm.

NB  This means that if a mating nut was rotated down 

this triple-start thread, it would be linearly displaced 

by 18 mm in one revolution – allowing the nut to be  rotated in, or out quickly (i.e. because of its larger he-lix angle), but to the detriment of an increased axial  loading.  Although  this  load  is  distributed  across  the  contact between all the multi-start threads

5.5.3 Threading Insert Inclination

The threading insert is carefully ground by the tool-ing manufacturer to provide the correct thread profile.  This insert must operate with a radial cutting rake of  0°, if the correct thread form is to actually imparted 

to the formed thread (Fig. 103). The lead angle of the  flank  surface  varies  at  different  points  between  the  crest and the root of the thread, increasing toward the  root – the opposite is true on an internal thread. Due 

to this effect, the actual cutting rake varies along the  insert’s  cutting  edge,  becoming  more  positive on  the  leading edge and more negative on the trailing edge – the 

closer it gets to the thread’s root. In order to minimise  such  threading  insert  rake  angle  variation  the  insert 

is inclined, so that its top face is perpendicular to a 

  Threading shimming – the tool holder is delivered fitted with 

a shim that gives an effective side inclination angle of 1° – be-ing the most common type. Although shims can be changed 

in degree increments from: –2° to 4°, by simply fitting a differ- ent shim angle. Likewise, internal threading tool holder incli-nations can be changed, by fitting such shims.

Trang 6

line indicating the mean lead angle ‘λ’  – measured at 

the pitch diameter (Fig. 103b). This insert inclination 

  Threading insert top face geometry – instead of a flat/straight 

top face to the insert, today, it is often angled (i.e. shown in 

Fig. 103bi – bottom left), which enables improved control of 

the developing chip.

produces  a  symmetrical  side  clearance  (i.e.  depicted 

in Fig. 103bi – bottom left diagram) and is important 

in ensuring a uniform edge wear on both flanks, re-sulting in increased insert useful life. The fact that this  small threading insert inclination, causes one flank to  cut slightly below, while the other cutting marginally  above the centre-line of the workpiece – for a flat top  faced insert, is of no practical significance at normal  lead  angles  for  either  the  function  of  cutting,  or  the 

Figure 103 Thread

for-mation by radial and flank infeeds, to-gether with threading insert inclina-tion angles [Courtesy of Sandvik Coromant]

Trang 7

thread’s  profile.  Further,  a  small  deviation  from  the 

exact symmetry required in the insert’s inclination is 

also  acceptable,  without  too  obvious  a  disadvantage. 

Thus, the inclined insert can be utilised to cut threads 

of between 0° and 2° with an inclination of 1° and, still  produce a satisfactory thread. This thread production  technique  is  only  true  for  the  normal,  symmetrical  threads  (i.e.  ‘V-forms’);  in  the  case  of  ‘saw-toothed’ 

Figure 104 External threading with an indexable insert – chip formation in a partially-formed/generated thread for a single pass

along the bar [Courtesy of Sandvik Coromant]

.

Trang 8

the ‘straight-flanked’ ones – those with angles between 

0° to 7° – in particular, offer side clearances which may 

be adequate. In Fig. 103c a graph depicting the thread-ing insert inclination angles is given for differing helix 

angles, with the helix angle calculation derived as fol-lows:

tan λ = P / D × π

Where:

 λ = Helix angle (°),

 P = Pitch (mm, or threads per inch),

 D = Effective pitch diameter (mm, or inches).

Metric  threading  inserts  are  characterised  by  their 

thread  profile  and  the  associated  pitch,  being 

ex-

pressed in millimetres. The shape and size of the in-sert  will  determine  the  completed  thread  form.  One 

threading  insert  can  be  utilised  to  cut  all  threads  of 

this profile and size, irrespective of their thread diam-eter, or whether they are: right- or, left-hand, single- 

or, multi-start (i.e. see Figs. 105b and 106a, for internal 

and external left- and right-hand threading configura-tions, respectively). 

In the case of internal thread inclination angles, the 

tool must be ‘canted-over’ at the angle ‘λ’ (i.e. see Fig. 

103bii), so that the cutting edge is situated normal to  the centreline. Often, the toolholder shank has to be  ground-away  to  avoid  fouling  on  the  internal  hole’s  diameter as shown in Fig. 105a. Here (Fig. 105a), the  distance from the tool tip to the rear of the toolholder 

shank – denoted by the dimension ‘D’ , is relieved to 

‘D mod’ to avoid fouling on the curvature of the hole, as  the tool is fed-out of the thread depth at the end of its  successive ‘threading passes’. 

5.5.4 Thread Profile Generation

The profile of a thread can be cut by several different  techniques and differing types of inserts – depending  whether ‘topping’ the is required. For example, if a V-form profiled threading insert is utilised (Fig. 106bi), 

no  actual  machining  is  undertaken  of  the  thread’s  top. In this situation, it is necessary to ensure that the 

Figure 105 Internal

threading operations for right- and left-hand threads [Courtesy of Sandvik Coromant]

Trang 9

Figure 106 External threading operations and insert forms [Courtesy of Sandvik Coromant]

.

Trang 10

pre-machined  workpiece  –  when  producing  external 

threads – has the exact size for the major diameter re-quired,  conversely,  for  internal  threads  this  must  be 

the minor diameter that is pre-machined. Due to the 

sharpness of the thread produced by this technique, it 

is often necessary to ‘chase the thread’ afterward. 

In the case of profiled threading inserts, the com-plete  thread  profile  is  cut  from  a  slightly  oversized

blank. Usually, three distinct profiling inserts could be 

used in thread production, these are:

V-form (Fig. 106bi) – has the ability to machine a 

range of thread profiles, with the nose radius pre-cisely and accurately ground for the smallest pitch 

to  be  cut.  As  a  result  of  this  tightly  ground  nose 

radius,  the  insert’s  life  is  shorter  than  with  other 

profiling  insert  versions,  as  its  size  has  not  been 

optimised  for  individual  thread  geometries.  From 

an economic viewpoint, due to the V-form profil-ing  insert’s  ability  to  cut  a  wide  variety  of  thread 

pitches, less inserts need to be stocked,

Full-form (Fig. 106bii) – has the ability to profile 

the thread’s crest and is therefore manufactured to 

exactly the specification of the required thread file.  Such  full-profile  inserts  simplify  thread 

pro-

duction, as no profile is deeper than its specifica-tion, allowing them to be a stronger insert thereby 

resulting in improved tool life,

Multi-point form

(Fig. 106biii) – with this multiple-pointed profiling insert, the first tooth roughs-out 

the thread and is therefore slightly set back in com-parison to the second tooth on the insert, which acts 

almost like a ‘chaser’ which fully-forms and blends 

the various thread profiling elements upon the final 

threading pass. Cutting conditions need to be rigid 

and stable for this type of insert to operate correctly 

– due to its longer cutting edge length. It is essential 

to ensure that the recommended in-feed values are 

used, to ensure that cutting forces are balanced for 

both of the cutting teeth. One advantage of utilising 

these multi-point threading inserts is that the num-ber of threading passes can be reduced by almost 

50% – as it cuts deeper than its counterparts, when 

compared to the single-profiling insert forms

  ‘Chasing a thread’ , refers to using a chasing tool

with the ex-act thread profile which is utilised to follow the thread along, 

thereby deburring and forming the desired profile simultane-ously.

5.5.5 Threading Turning –

Cutting Data and Other Important Factors

Whatever  type  of  thread  to  be  cut,  whether  it  is  a:  V-form, Multi-start, Trapezoidal, or Tapered, it is gen-erally quite difficult to vary such factors as the: cutting  speed, feed and, to a lesser extent the DOC , indepen-dently of one another, without certain consideration of  some limiting factors. The typical limitations imposed  when cutting a thread, will now be discussed. 

Cutting Speed

Typical  limitations  imposed  by  the  action  of  cut-ting  a  thread  include,  reducing  the  cutcut-ting  speed  by  25%  –  compared  to  ordinary  turning,  as  the  insert’s  shape  limits  heat  dissipation.  If  a  high  a  chip  load  occurs  due  too  great  a  cutting  speed  selected,  then  the  cutting  temperature  can  approach  that  of  say,  a  cemented  carbide’s  original  sintering  temperature. 

As  a  result  of  this  elevated  temperature,  the  binder  phase  may  soften,  causing  potential  cutting  edge  plastic  deformation.  The  remedy  here  seems  quite  easy, simply reduce the cutting speed, but this may in-crease the risk of BUE. This BUE may cause the chips 

to become welded onto the cutting edge from which  they are shortly fragmented and continuously carried  away  –  taking  a  minute  portions  of  the  insert’s  edge  along  with  them.  The  problem  can  be  minimised  by  specifying a tougher grade of carbide for the threading  insert,  or  choosing  a  multi-coated  insert.  Normally,  the cutting speeds for any threading operation should  not be less than 40 m min–, when machining with any  cemented carbides. 

Feed and DOC

The feed in millimetres per revolution, must coincide  with the desired pitch, or lead – when cutting multi-start threads. Hence, if the cutting speed is modified,  the  feedrate  will  also  have  to  be  increased,  or  de-creased, so that the feed per revolution is constantly  maintained.  So,  the  critical  factor  here  is  to  achieve 

some  form  of  control  over  the  DOC when  threading.  Each threading pass along the workpiece causes an in-creasingly larger portion of the insert’s cutting edge to  become in contact in the threading operation, accord-ingly,  tool  forces  will  proportionally  increase.  If  the 

DOC

Ngày đăng: 21/06/2014, 22:20