1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Systems, Structure and Control 2012 Part 5 docx

20 293 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 387,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Since the projection method leads to discontinuous trajectories in the estimated states, a nonstandard Lyapunov - Krasovski functional is applied to derive the upper bound for estimation

Trang 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1.5

-1 -0.5 0 0.5 1 1.5 2 2.5x 10 -3

Time [s]

x3 DNN Observer without projection

x3 Projectional DNN Observer

x3

-2 -1 0 1 2 3 4 5 6

7x 10 -3

Time [s]

x3

x3 Projectional DNN Observer

x3 DNN Observer without projection

Trang 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -5

-4 -3 -2 -1 0 1 2 3 4

5x 10 -4

Time [s]

x4 DNN Observer without projection

x4 Projectional DNN Observer

x4

x4 min

x4 max

-5 -4 -3 -2 -1 0 1 2 3 4

5x 10 -4

Time [s]

x4

x4 Projectional DNN Observer

x4 DNN Observer without projection

As it can be seen, the projectional DNNO has significantly better quality in state estimation, especially in the beginning of the process, when negative values and over-estimation have been obtained by a non-projectional DNNO

Trang 3

6 Conclusion and future work

The complete convergence analysis for this class of adaptive observer is presented Also the boundedness property of the adaptive weights in DNN was proven Since the projection method leads to discontinuous trajectories in the estimated states, a nonstandard Lyapunov

- Krasovski functional is applied to derive the upper bound for estimation error (in "average sense"), which depends on the noise power (output and dynamics disturbances) and on an unmodelled dynamic It is shown that the asymptotic stability is attained when both of these uncertainties are absent The illustrative example confirms the advantages, which the suggested observers have being compared with traditional ones

Appendix (proof of Theorem 2)

Evidently that

( ) (t′ −δth)≤Lδt′− th( )t )

δ

η η η η η

η η η η η η

ϒ

− Λ

≤ Λ

− Λ

=

2 1 2

1

2 1 1 2 1

/ )

(

t / , t / t

ξ ξ

ξ( )≤ Λ−1 /1 2ϒ

( )

2 1 2 1 1 0

2

f~

t x f~

f~

/ f~

) ( f~

Λ +

− Λ

where δ( )t:=( ) ( )t′ −x t is the state estimation error at time t

Consider the next "nonstandard" Lyapunov-Krasovskii ("energetic") function

( ) δ(τ) p k( )τ tr{W ~ T( ) ( )τ W ~ τ}dτ

t t h t

external output disturbances we won't demonstrate that the time-derivative of this energetic function is strictly negative Instead, we will use it to obtain an upper bound for the averaged state estimation error Taking time derivative of Lyapunov-Krasovski function and

Trang 4

( )[ ( ) ( ) ]

( ) ( ) { ( ) ( ) } ( ( ) ) { ( ) ( ) }

( ) { ( ) ( ) } ( ( ) ) { ( ) ( ) }

( ) { ( ) ( ) } ( ( ) ) { ( ) ( ) }

( ) { ( ) ( ) } ( ( ) ) { ( ) ( ))}

) ( +

W ˆ + Wˆ + x

+ +

+ +

) t

) ( x

-) xˆ

t h t

W ~ ) t h t

W ~ t h t k t

W ~ t

W ~ t k

) t h t

W ~ ) t h t

W ~ t h t k t

W ~ t

W ~ t k

t h t -d ) ( ) ( f~

) ( u ) ( x ( ) ( x ) ( Ax

-))

t

h

-(

d )) ( C -( ( K ) ( u ) ( xˆ )(

( W ) ( xˆ ) ( W ) ( xˆ A ))

t

h

-(

t h t

W ~ ) t h t

W ~ t h t k t

W ~ t

W ~ t k

) t h t

W ~ ) t h t

W ~ t h t k t

W ~ t

W ~ t k

) h t p t

d )) t xˆ C -( + ) ( Cx ( K + ) ( u ) ( )(

( W + ) ( ) ( W + ) ( xˆ A t h t +

))

t

h

-(

) ( V dt d

T T

T T

p p

t t h t

t t h t

T T

T

t X

− +

− +

− +

+

+

=

=

⎪⎭

⎪⎩

2 2

2 2 2 2

1 1

1 1 1 1

2 2

2 1

2 1

2 2

2 2 2 2

1 1

1 1 1 1

2

2

2 1

tr tr

tr tr

tr tr

tr tr

δ τ τ ξ τ τ τ ϕ σ

τ τ δ τ η τ τ ϕ τ τ σ τ τ

δ

τ τ

η τ τ

τ ϕ τ τ

σ τ τ τ

π

τ τ

Taking into account that

(Pa, b)

P b P a P b

Defining:

( ) ( ) ( ) ( )xˆ (t) x(t) :

(t)

~

x(t) σ (t) xˆ σ (t):

σ~

, i i

W ˆ (t) i W (t):

i

W ~

KC, A :

A ~

ϕ ϕ

=

=

=

=

2 1

we derive

( ) ( ) ( ) { ( ) ( ) } ( ( ) ) { ( ) ( ) }

( )t tr{W ~ T( ) ( )t W ~ t} k (t h( )t)tr{W ~ T (t h( )t ) W ~ (t h( )t )}

k

) t h (t

W ~ ) t h (t T

W ~ tr t h t k t

W ~ t T

W ~ tr t k

t β t α V

+

+ +

2 2

2 2 2 2

1 1

1 1 1 1

where:

( )

]

( ) ( )

] τ)

τ τ ξ τ η τ τ ϕ

τ τ ϕ τ τ σ τ σ τ τ δ τ

δ β

τ τ τ ξ τ η τ τ ϕ

τ τ ϕ τ τ σ τ σ τ τ δ τ

α

d ) ( f~

) ( ) ( K ) ( u ) (

~

W ˆ

) ( u ) ( xˆ )(

(

W ~ ) (

~ Wˆ ) ( xˆ ) (

W ~ ) (

A ~ t t h t , h t P :

t

P d ) ( f~

) ( ) ( K ) ( u ) (

~

W ˆ

) ( u ) ( xˆ )(

(

W ~ ) (

~

W ˆ ) ( xˆ ) (

W ~ ) ( A

~ t t h t : t

− + +

+ +

+

=

=

− +

+ +

+ +

=

=

2

2 1

1 2

2 2

2 1

1

Trang 5

The term β( )t is expanded as

( ) ( ( ) )

( ) ( ) ( )

( )

( ) ( ) ( ) ( ( ) ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

( )

( ) ( ( ) ( ) ) ( ( ) ) ( ) ( ) ⎟

=

=

− +

⎟⎟

⎜⎜

=

− +

=

− +

=

− +

=

+

=

=

τ τ τ

δ τ τ ξ τ η τ

δ

τ τ τ ϕ τ

δ

τ τ τ ϕ τ τ

δ

τ τ σ τ

δ τ τ σ τ τ

δ

τ τ δ τ

δ β

d f~

t t h t , t h t P d K

t t h t , t h t P

d ) ( u ) (

~

W ˆ t t h t , t h t P

d ) ( u ) ( xˆ )(

(

W ~ t t h t , t h t P

d

~

W ˆ t t h t , t h t P d xˆ

W ~ t t h t , t h t P

d

A ~ t t h t , t h t P t

2 2

2 2 2

2 2

1 2

2

2

( )

]

⎟⎟

⎜⎜

+ + +

= +

⎪⎩

⎟⎟

⎜⎜

+ +

+

=

− + +

+ + +

=

=

τ τ ξ τ τ η τ τ ϕ τ

τ τ τ ϕ τ τ

σ τ

σ τ τ

δ τ

τ τ τ ξ τ η τ τ ϕ

τ τ ϕ τ τ σ τ σ τ τ δ τ

α

d p p f~

p K p ) ( u ) (

~

W ˆ t t h t

d p ) ( u ) ( xˆ )(

(

W ~ p ) (

~ Wˆ p ) ( xˆ ) (

W ~ p

A ~ t t h t

P d ) ( f~

) ( ) ( K ) ( u ) (

~

W ˆ

) ( u ) ( xˆ )(

(

W ~ ) (

~ Wˆ ) ( xˆ ) (

W ~ ) ( A

~ t t h t : t

2 2 2 2 2

2 2

2 1

2 1

2 8

2 2

2 1 1

B

T

Y YΛ T XΛΛ T YX T

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( )t C T ( )t ( )t C T C I ( )t e

T C

t t t C T C t T C t e T C

t t C T C t e T C

t t Cx t xˆ C t y t yˆ t e

δ ϖ ϖδ

η

ϖδ ϖδ δ η

η δ

η

= + +

− +

= +

=

=

=

Giving

( )t =Nϖ⎜−C T e( )t +C Tη( )t +ϖδ( )t

δ

Trang 6

where:

1

:

obtained:

( ) ( )

( )+

⎥⎦

⎤ +

+

⎞ +

⎢⎣

t h t δ Q Λ Λ I L μ σ L μ μ u L Λ σ

L

Λ

P Λ Λ T

W ˆ Λ

W ˆ T

W ˆ Λ

W ˆ Λ P

A ~ P T

A ~ T t h t δ t h ) ( V dt d

0

1 7

1 3

2 3 2 1

2 8 5

1 10

1 9 2

1 8 2 1

1 5 1

1 1

ϖ ϕ ϕ

( )

( )

( ) ( ) ( ) ( ( )) ( ) ( )( ) ( )σ T( )( )τ W ~ T( )τ PN (CΛ C Λ )N W ~ ( ) ( )τ σ( )xˆ τ dτ

t t h t τ

dτ τ xˆ σ τ

W ~ P CN t h t T e t t h t τ t h t δ Q T t h t δ η ξ ξ

Λ

P

Diam(x) f~

Λ f~

f~

f~

Λ P η

/ η Λ P K

f~

Λ t x f~

f~

f~

Λ Λ ξ

/ ξ Λ η

/ η Λ K Λ h(t)

δ L L Λ δ L L μ δ L μ δ L σ L μ δ L σ L Λ δ L A

~ Λ t

h

⎥⎦

⎢⎣

= +

= +

⎥⎦

− ϒ + ϒ

⎞ +

⎡ +

− + ϒ

+

⎡ +

− +

ϒ

− + ϒ

+

+

ϒ + + +

+

1 3 2 1

1 2

0 2

1

2 1

1 0 1 2

1 2

2 1 1 0 1 10

2 2 1 2

1 9

3

2 2 8 3

2 2 3 3

2 1 3

2 2 3

2 5 4

2 2 1 3

ϖ ϖ ϖ

ϖ

ϕ ϕ

( )

( )t tr{W ~ 2 T( ) ( )t W ~ 2 t} k 2(t h( )t )tr{W ~ 2 T (t h( )t ) W ~ 2 (t h( )t )}

2 k

)dτ u(

) ( xˆ )(

( 2

W ~ )P ( T 2

W ~ T ) ( xˆ )(

( T u t t h t τ

)dτ u(

) ( xˆ )(

( 2

W ~ P N 7 Λ C 6 Λ T C PN τ T 2

W ~ τ xˆ T ) ( T u t

t h

t

τ

dτ ) u(

) ( xˆ )(

( 2

W ~ P CN t h t T e 2 t t h t τ

) t h (t 1

W ~ ) t h (t T 1

W ~ tr t h t 1 k

t 1

W ~ t T 1

W ~ tr t 1 k dτ τ xˆ σ τ

W ~ )P ( T 1

W ~ τ xˆ T σ t t h t τ

+

= +

=

+

=

+

− +

= +

τ τ ϕ τ τ τ

ϕ τ

τ τ ϕ τ ϖ ϖ ϖ

ϕ τ

τ τ ϕ τ ϖ τ

Trang 7

Considering

0

1 7

1 3

2 3 2 1

2 8 5

3 2 1

1 10

1 9 2

1 8 2 1

1 5 1

1 1 1

0 3 2 1 1

Q

I L L

u L L

, , , Q

T

W ˆ

W ˆ T

W ˆ

W ˆ R

, , , Q P PR K

A ~ P K T

A ~

+

+

⎥⎦

⎢⎣

=

− Λ +

− Λ +

− Λ +

− Λ +

− Λ

=

− + +

ϖ

ϕ μ σ μ μ ϕ σ

μ μ μ δ

μ μ μ δ

implies:

( ) ( ) ( ) ] ( ) ( ) }

( ) { 1 ( ) ( )1 } 1( ( ) ) { 1 ( ) 1 ( ) } 0 1

1

1 2

3 2

1

=

− +

+

=

) h t

W ~ ) h t T

W ~ tr t h t k t

W ~ t T

W ~ tr t k

d xˆ T xˆ

W ~

W ~ P N C T N

t h t e T N P T

W ~ tr t

t h

t

τ τ σ τ σ τ

τ σ τ ϖ ϖ

ϖ ϖ

τ τ

that can be obtained selecting

( ) ( )

( ) ( ) ( ) ] ( ) ( )

( )

⎢⎣

=

t

W ~ dt

(t) dk

τ xˆ T σ τ xˆ σ τ

W ~

+ τ xˆ σ τ

W ~ P N C Λ T +C Λ +N t t-h e T C N P (t) k

-t W dt d

1 1 1

1 2

3 2

1 2 1

1

ϖ ϖ

ϖ ϖ

Analogously, for the second adaptive law

( ) ( ) ( ( ) ) ( ) ( )

( ) ] ( ( ) ) }

( ) { 2( ) ( )2 } 2( ( ) ) { 2 ( ) 2 ( ) } 0 2

2

1 7

6 2

2

=

− +

+

⎢⎣

=

) h t

W ~ ) h t T

W ~ t h t k t

W ~ t T

W ~ t k

d xˆ T ) ( T ) ( u ) ( xˆ )(

(

W ~

) ( u ) ( xˆ (

W ~ P N C

T C N t h t e T C N P T

W ~ t

t

h

t

tr tr

tr

τ τ ϕ τ τ τ ϕ τ

τ τ ϕ τ ϖ ϖ ϖ

ϖ τ τ

leading to

( ) ( )

( ) ] ( ) ( )

( )

⎢⎣

=

t

W ~ dt

) ( dk

xˆ T ) ( T ) ( u ) ( xˆ )(

(

W ~

+ ) ( u ) ( xˆ (

W ~ P N + C T C N + t h -e T C N P )

(

k

t W dt d

2 2 2

1 7

6 2

1 2

2

2

τ ϕ τ τ τ ϕ τ

τ τ ϕ τ ϖ ϖ ϖ

ϖ

Trang 8

Finally:

( )

( )

( ) − ( )⎥⎦⎤

− ϒ + ϒ

− Λ +

⎡ Λ +

− Λ + ϒ

− Λ +

Λ +

− Λ Λ +

ϒ

− Λ + ϒ

− Λ Λ +

Λ +

ϒ + + +

Λ + Λ

t h t Q T t h t P

) x ( Diam f~

f~

f~

f~

P / P K

f~

t x f~

f~

f~

/ /

K ) h

L L L L L

L L L L L

A ~ t h ) V

dt

d

δ δ η ξ ξ

η η

ξ ξ η η

δ ϕ δ ϕ μ δ μ δ σ μ δ σ δ

0 2

1

2 1

1 0 1 2

1 2

2 1 1 0 1 10

2 2 1 2

1 9

3

2 2 8 3

2 2 3 3

2 1 3

2 2 3

2 5 4

2 2 1 3

or in the short form:

( ) ( )⎜ + − ( − ( ) ) ( − ( ) )⎟

) ( V dt

d

δ

2 where

( ) η ξ ξ η

η

ξ ξ η η

δ ϕ δ ϕ μ δ μ δ σ μ δ σ δ

ϒ + ϒ

− Λ +

⎡ Λ +

− Λ + ϒ

− Λ +

Λ +

− Λ Λ +

ϒ

− Λ + ϒ

− Λ Λ

=

ϒ Λ +

ϒ + + +

Λ + Λ

=

2 1 2

1 1 0 1 2

1 2

2 1 1 0 1 10

2 2 1 2

1 9

3

2 2 8 3

2 2 3 3

2 1 3

2 2 3

2 5 4

2 2 1

P ) x ( Diam f~

f~

f~

f~

P / P K

f~

t x f~

f~

f~

/ /

K : b

L L L L L

L L L L L

A ~ : a

So,

( ) (t h t )Q (t h( )t ) (ah( )t b) dV dt ( ) h( )t

δ

And integrating, we obtain

τ τ τ τ δ τ τ δ

) ( dV b ) ( ah

T d ) ( h Q ) ( h T

T

⎥⎦

⎢⎣

=∫

=∫

1 2

0 0

0

And hence,

( ) h ( )

V ) ( h

V t

h t

V ) ( h

V d T

d ) ( h ) ( h V

T + ) ( h

V d

T -) ( h dV T

0

0 0

0 0

2 0 0

0

≤ +

=

⎟⎟

⎜⎜

=∫

=∫

⎟⎟

⎜⎜

=∫

=

=∫

τ

τ τ

τ τ

ττ τ τ

τ τ

ττ τ

This implies

( )

) ( h

V bT d t h Q

T

a d ) ( h )

( h

T T

0

0 2

0

=

τ

τ τ τ

τ

Dividing by T and taking the upper limit we finally get (30)

Trang 9

8 References

Abdollahi, F Talei, A., & Patel R (2006) A stable neural network based observer with

17 No 1 pp 118-129

Alamo, T., Bravo, J M & Camacho, E F (2005) Guaranteed state estimation by zonotopes

Automatica vol 41 pp 1035-1043

Chairez, I., Poznyak, A & Poznyak, T (2006) New Sliding mode learning law for Dynamic

1338-1342

Dochain, D (2003) State and parameter estimation in chemical and biochemical processes: a

García, A., Poznyak, A., Chairez, I & Poznyak T (2007) Projectional dynamic neural

Brazil

Haddad, W Bailey, J., Hayakawa T., & Hovakimnayan, N (2007) Neural Network

adaptive output feedback control for intensive care unit sedation and

1049-1065

Basel-Boston Berlin

Krener, A J & Isidori (1983) Linearization by output injection and nonlinear observers

System an Control Letters Vol3, pp 47-52

Journal of Robotics and Automation, v.4,pp 45-52

Pilutla, S & Keyhani, A (1999) Neural Network observers for on-line tracking of

pp 23-30

control World Scientific

Poznyak, A (2004) Deterministic output noise effects in sliding mode observation In

variable structure system: from principles to implementation IEE Control Engineering

series pp 45-80

Poznyak, T., García, A., Chairez, I., Gómez M & Poznyak, A (2007) Application of the

differential neural network observer to the kinetic parameters identification of the

146, pp 661-667

Radke, A & Gao, Z.(2006) A survey of state an disturbance observers for practitioners,

Proceedings of the American Control Conference, Minneapolis, Minnesota USA, pp

5183-5188

Stepanyan, V & Hovakimyan, N (2007) Robust Adaptive Observer Design for uncertain

pp 1392-1403

Tornambe, :A (1989), Use of asymptotic observers having high-gains in the state and

1791-1794

Trang 10

Valdes-González, H., Flaus, J., Acuña G (2003) Moving horizon state estimation with global

convergence using interval techniques: application to biotechnological processes

Journal of Process Control Vol 13 pp 325-336

Wang, W., & Gao, Z (2003) A comparison study of advanced state observer design

Yaz E & AzemiA (1994) Robust-adaptive observers for systems having uncertain functions

Zak H., & B L.Walcott (1990) State observation of nonlinear control systems via the

Systems, pp 333-350 Peter Peregrinus, Stevenage UK, 1990

Trang 11

4

Integral Sliding Modes with Block Control of

Multimachine Electric Power Systems

Héctor Huerta, Alexander Loukianov and José M Cañedo

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,

Unidad Guadalajara Jalisco, México

1 Introduction

Over last 15 years the problem of rotor angle stability of electric power systems (EPS) has received a great attention A fundamental problem in the design of feedback controllers for EPS is that of robust stabilizing both rotor angle and voltage magnitude, and achieving a specified transient behavior Robustness implies operation with adequate stability margins and admissible performance level in spite of plant parameters variations and in the presence

of external disturbances

The EPS have nonlinearities and are subject to variations as a result of a change in the systems loading and/or configuration Then, the EPS are modeled as complex large-scale nonlinear systems and the generators may be interconnected over several kilometers in very large power systems Thus, the controller design is a challenging problem A complete centralized control scheme could be difficult to implement in EPS, due to the reliability and distortion in information transfer On the other hand, accurate prediction of system responses and system robustness to disturbances under different operation conditions are guarantee by robust decentralized control schemes The decentralized controllers are locally implemented, so do not need system information communication among subsystems In each subsystem, the effects of the other subsystems are considered as a disturbance To design decentralized control schemes for EPS, a controller is designed for each generator connected to the system

The control schemes of power systems are commonly based on reduced order linearized model and classical control algorithms that ensure asymptotic stability of the equilibrium point under small perturbations (Anderson & Fouad, 1994, DeMello & Concordia, 1969) Improvements on linear techniques have been analyzed in (Wang et al., 1998, Djukanovic et at., 1998a, Djukanovic et al., 1998b) Nevertheless, these controllers have been designed by using linear models To analyze the EPS entire operation region, nonlinear control design techniques are more appropriate Various nonlinear techniques have been implemented, e.g., control based on direct Lyapunov method (Machowsky et al., 1999), feedback linearization (FL) technique (Akhkrif, et al, 1999, Wu & Malik, 2006, ) including backstepping (Jung et al., 2005 King et al., 1994), intelligent neural networks (Venayagamoorthy et al., 2003, Mohagheghi et al., 2007), fuzzy logic (Yousef & Mohamed, 2004) and normal form analysis (Kshatriya, et al., 2005, Liu et al., 2006)

Ngày đăng: 21/06/2014, 20:20