We introduce and study some new subclasses of p-valent starlike, convex, close-to-convex, and quasi-convex functions defined by certain Srivastava-Attiya operator.. Goodman, “On the Schw
Trang 1Volume 2010, Article ID 790730, 11 pages
doi:10.1155/2010/790730
Research Article
Some Applications of Srivastava-Attiya Operator to
p-Valent Starlike Functions
E A Elrifai, H E Darwish, and A R Ahmed
Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Correspondence should be addressed to H E Darwish,darwish333@yahoo.com
Received 25 March 2010; Accepted 14 July 2010
Academic Editor: Ram N Mohapatra
Copyrightq 2010 E A Elrifai et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We introduce and study some new subclasses of p-valent starlike, convex, close-to-convex, and
quasi-convex functions defined by certain Srivastava-Attiya operator Inclusion relations are established, and integral operator of functions in these subclasses is discussed
1 Introduction
Let Ap denote the class of functions of the form
f z z p∞
n1
a n p z n p
p ∈ N {1, 2, 3, }, 1.1
which are analytic and p-valent in the open unit disc U {z : z ∈ C and |z| < 1} Also, let the
Hadamard product orconvolution of two functions
fj z z p∞
n1
an p,j z n p
be given byf1∗ f2z z p∞
n1a n p,1 a n p,2 z n p f2∗ f1z.
A function fz ∈ Ap is said to be in the class S∗
p α of p-valent functions of order α
if it satisfies
Re
zfz
f z
> α
0≤ α < p, z ∈ U. 1.3
we write S∗p 0 S∗
p , the class of p-valent starlike in U.
Trang 2A function f ∈ Ap is said to be in the class C p α of p-valent convex functions of order α if it satisfies
Re
1zf
z
fz
> α
0≤ α < p, z ∈ U. 1.4
The class of p-valent convex functions in U is denoted by C p C p 0.
It follows from1.3 and 1.4 that
f z ∈ C p α iff zfz
p ∈ S∗
p α 0≤ α < p. 1.5
The classes S∗p and C p were introduced by Goodman 1 Furthermore, a function
f z ∈ Ap is said to be p-valent close-to-convex of order β and type γ in U if there exists a function gz ∈ S∗
p γ such that
Re
zfz
g z
> β
0≤ β, γ < p, z ∈ U. 1.6
We denote this class by K p β, γ The class K p β, γ was studied by Aouf 2 We note
that K1β, γ Kβ, γ was studied by Libera 3
A function f ∈ Ap is called quasi-convex of order β type γ, if there exists a function
g z ∈ C p γ such that
Re zf
z
gz
> β, z ∈ U, 1.7
where 0 ≤ β, γ < p We denote this class by K∗
p β, γ Clearly fz ∈ K∗
p β, γ ⇔ zfz/p ∈
K p β, γ.The generalized Srivastava-Attiya operator J s,b f z : Ap → Ap in 4 is introduced by
J s,b f z G s,b z ∗ fz z ∈ U : b ∈ C \ Z0 {0, −1, −2, −3, }, s ∈ C, p ∈ N 1.8 where
Gs,b z 1 b s
φ z, s, b − b −s
,
φ z, s, b 1
b s z p
1 b s z1p
2 b s · · · 1.9
It is not difficult to see from 1.8 and 1.9 that
Js,bf z z p∞
n1
1 b
n 1 b
s
an p z n p 1.10
Trang 3When p 1, the operator J s,bis well-known Srivastava-Attiya operator5.
Using the operator J s,b , we now introduce the following classes:
S∗p,s,b
γ
f z ∈ Ap
: J s,b f z ∈ S∗
p
γ
,
Cp,s,b
γ
f z ∈ Ap
: J s,bf z ∈ C p
γ
,
K p,s,b
β, γ
f z ∈ Ap
: J s,b f z ∈ K p
β, γ
,
K∗p,s,b
β, γ
f z ∈ Ap
: J s,bf z ∈ K∗
p
β, γ
.
1.11
In this paper, we will establish inclusion relation for these classes and investigate Srivastava-Attiya operator for these classes
We note that
1 for s σ, b p, we get Jung-Kim-Srivastava 6,7;
2 for s 1, 1 b c p, we get the generalized Libera integral operator 8,9;
3 for s −k being any negative integer, b 0, and p 1, the operator J −k,0 D k f z
was studied by S˘al˘agean10
2 Inclusion Relation
In order to prove our main results, we will require the following lemmas
Lemma 2.1 see 11 Let wzbe regular in U with w0 0 If |wz| attains its maximum value
on the circle |z| r at a given point z0∈ U, then z0wz0 kwz0, where k is a real number and
k ≥ 1.
Lemma 2.2 see 12 Let u u1 iu2, v v1 iv2, and let ψ u, v be a complex function,
ψ : D → C, D ⊂ C × C Suppose that ψ satisfies the following conditions:
i ψu, v is continuous in D,
ii 1, 0 ∈ D and Re{ψ1, 0} > 0,
iii Re{ψiu2, v1} ≤ 0 for aliu2, v1 ∈ D such that v1≤ −1 u2
2/2.
Let h z 1 c1z c1z2 · · · be analytic in U, such that hz, zhz ∈ D for z ∈ U If
Re{ψhz, zhz} > 0, z ∈ U then Re hz > 0 for z ∈ U.
Our first inclusion theorem is stated as follows
Theorem 2.3 S∗
p,s.b γ ⊂ S∗
p,s 1,b γ for any complex number s.
Proof Let f z ∈ S∗
p,s,b γ, and set
z
Js 1,b f z
J s 1,b f z − γ
p − γh z, 2.1
Trang 4where hz 1 c1z c2z2 · · · Using the identity
z
J s 1,b f zp − 1 b J s 1,b f z 1 bJ s,b f z, 2.2
we have
J s,b f z
J s 1,b f z
1
1 b
z
Js 1,b f z
J s 1,b f z − p b 1
,
Js,bf z
J s 1,b f z
1
b 1
γp − γh z − p b 1.
2.3
Differentiating 2.3, logarithmically with respect to z, we obtain
z
J s,b f z
J s,b f z − γ
p − γh z
p − γzhz
p − γh z γ − p b 1 . 2.4 Now, from the function ψu, v, by taking u hz, v zhz in 2.4 as
ψ u, v p − γu
p − γv
p − γu γ − p b 1 , 2.5
it is easy to see that the function ψu, v satisfies condition i and ii ofLemma 2.2, in D
C − {γ − p b 1/γ − p} × C To verify condition iii, we calculate as follows:
Re
ψ iu2, v1 Re
p − γv1
p − γiu2 γ − p b 1
Re p − γ
v1
γ − p b 1− ip − γu2
p − γ2
u221− p b γ2
Re p − γ
γ − p b 1v1− ip − γ2
v1u2
p − γ2u2
21− p b γ2
p − γγ − p b 1v1
p − γ2
u2
21− p b γ2
≤ −
p − γγ − p b 11 u2
2
2
p − γ2
u221− p b γ2 < 0,
2.6
where v1 ≤ −1 u2
2/2 and iu2, v1 ∈ D Therefore, the function ψu, v satisfies the
conditions ofLemma 2.2
This shows that if Rehz, zhz > 0 z ∈ U, then
Rehz > 0, z ∈ U 2.7
Trang 5if f ∈ S∗
s γ, then
S∗p,s,b
γ
⊂ S∗
p,s 1,b
γ
This completes the proof ofTheorem 2.3
Theorem 2.4 C p,s,b γ ⊂ C p,s 1,b γ, for any complex number s.
Proof Consider the following:
f z ∈ C p,s,b
γ
⇐⇒ J s,b f z ∈ C p
γ
⇐⇒ z
p
J s,b f z∈ S∗
p
γ
⇐⇒ J s,b
zfz
p
∈ S∗
p
γ
⇐⇒zfz
p ∈ S∗
p,s,b
γ
⇒zfz
p ∈ S∗
p,s 1,b
γ
⇐⇒ J s 1,b
zfz
p
∈ S∗
p
γ
⇐⇒z
p
J s 1,b f z∈ S∗
p
γ
⇐⇒ J s 1,b f z ∈ C p
γ
⇐⇒ fz ∈ C p,s 1,b
γ
,
2.9
which evidently provesTheorem 2.4
Theorem 2.5 K p,s,b β, γ ⊂ K p,s 1,b β, γ, for any complex number s.
Proof Let f z ∈ K p,s,b β, γ Then, there exists a function kz ∈ S
p γ such that
Re z
J s,b f z
g z
> β z ∈ U. 2.10
Taking the function kz which satisfies J s,b k z gz, we have kz ∈ S
p γ and
Re{zJs,b f z/J s,b k z} > β z ∈ U.
Now, put zJ s 1,b f z/ J s 1,b k z − β p − βhz, where hz 1 c1z c2z2 · · ·
Using the identity2.2 we have
z
J s,b f z
Js,bk z
Js,b
zfz
Js,bk z
z
J s 1,b
zf
z−p − 1 bJ s 1,b
zf
z
z J s 1,b k z−p − 1 bJs 1,b k z
z
J s 1,b
zf z /J s 1,b k z −p − 1 bJ s 1,b
zf z/J s 1,b k z
z J s 1,b k z/Js 1,b k z −p − 1 b .
2.11
Trang 6Since kz ∈ S∗
p,s,b γ and S∗
p,s,b γ ⊂ S∗
p,s 1,b γ, we let zJ s 1,b k z/Js 1,b k z p − γHz
γ, where Re H z > 0 z ∈ U thus 2.11 can be written as
z
J s,b f z
J s,b k z
z
J s 1,b
zf
z/J s 1,b k z −p − 1 bβp − βh z
p − γH z γ −p − 1 b . 2.12
Consider that
z
J s 1,b f z J s 1,b k zβp − βh z. 2.13 Differentiating both sides of 2.13, and multiplying by z, we have
z
J s 1,b
zf
z
J s 1,b k z
p − βzhz βp − βh z·p − γH z γ. 2.14 Using2.14 and 2.12, we get
z
Js,bf z
Js,bk z − β
p − βh z
p − βzhz
p − γH z γ −p − 1 b . 2.15 Taking u hz, v zhz in 2.15, we form the function ψu, v as
ψ u, v p − βu
p − βv
p − γH z γ −p − 1 b . 2.16
It is not difficult to see that ψu, v satisfies the conditions i and ii ofLemma 2.2in D
C × C To verify condition iii, we proceed as follows:
Re ψiu2, v1
p − βv1
p − γh1
x, y
γ −p − 1 b
p − γh1
x, y
γ 1 b − p2p − γh2
x, y2, 2.17
where Hz h1x, y ih2x, y, h1x, y and h2x, y being the functions of x and y and
Re Hz h1x, y > 0.
By putting v1 ≤ −1/21 u2
2, we have
Re ψiu2, v1 ≤ −
p − β1 u2
2
p − γh1
x, y
γ −p − 1 b
2
p − γh1
x, y
γ 1 b − p2p − γh2
x, y2 < 0. 2.18
Hence, Re hz > 0 z ∈ U and fz ∈ K p,s 1,b β, γ The proof ofTheorem 2.5is complete.
Theorem 2.6 K∗
p,s,b β, γ ⊂ K∗
p,s 1,b β, γ for any complex number s.
Trang 7Proof Consider the following:
f z ∈ K∗
p,s,b
β, γ
⇐⇒ J s,bf z ∈ K∗
p
β, γ
⇐⇒ z
p
J s,b f z∈ K p
β, γ
⇐⇒ J s,b
zfz
p
∈ K p
β, γ
⇒zfz
p ∈ K p,s,b
β, γ
⇒ zfz
p ∈ K p,s 1,b
β, γ
⇐⇒ J s 1,b
zfz
p
∈ K p
β, γ
⇐⇒ z
p
J s 1,b f z∈ K p
β, γ
⇐⇒ J s 1,b f z ∈ K∗
p
β, γ
⇒ fz ∈ K∗
p,s 1,b
β, γ
.
2.19
The proof ofTheorem 2.6is complete
3 Integral Operator
For c > −1 and fz ∈ Ap, we recall here the generalized Bernardi-Libera-Livingston integral operator L c f z as follows
Lcf z c p
z c
z
0t c−1f tdt
z p∞
n1
c p
c p n
a n p z n p
3.1
The operator L c fz when c ∈ N {1, 2, 3, } was studied by Bernardi 13, for
c 1, L1fz was investigated earlier by Libera 14 Now, we have
J s,b
L c f z z p∞
n1
1 b
1 b n
s c p
c p n
a n p z n p , 3.2
so we get the identity
z
Js,b
Lcf zc pJs,bf z − cLcf z. 3.3
The following theorems deal with the generalized Bernard-Libera-Livingston integral
operator L c fz defined by 3.1
Theorem 3.1 Let c > −γ, 0 ≤ γ < p If fz ∈ S∗
p,s,b γ, then L c f z ∈ S∗
p,s,b γ.
Trang 8Proof From3.3, we have
z
Js,b
Lcf z
J s,b L c f z
c pJs,bf z
Js,b
Lcf z − c
11− 2γω z
1− ωz , 3.4 where wz is analytic in U, w0 0 Using 3.3 and 3.4 we get
Js,bf z
Js,bLcf z
c p wz1− c − 2γω z
c p1 − ωz . 3.5
Differentiating 3.5, we obtain
z
Js,bf z
Js,bf z
11− 2γw z
1− wz −
zwz
1− wz
1− c − 2γzwz
p c 1− c − 2γw z . 3.6
Now we assume that|wz| < 1 z ∈ U Otherwise, there exists a point z0 ∈ U such that
max|wz| |wz0| 1 Then byLemma 2.1, we have z0wz0 kwz0, k ≥ 1 Putting
z z0and wz0 e iθin3.6, we have
Re z0
J s,b f z0
J s,b f z0 − γ
1− γke iθ
1− e iθ
p c 1− c − 2γe iθ
1− γc γ
1 c2 21 c1− c − 2γcos θ1− c − 2γ2 ≤ 0,
3.7
which contradicts the hypothesis that fz ∈ S∗
p,s,b γ.
Hence,|wz| < 1, for z ∈ U, and it follows 3.4 that L cf ∈ S∗
p,s,b γ.
The proof ofTheorem 3.1is complete·
Theorem 3.2 Let c > −γ, 0 ≤ γ < p If f ∈ C p,s,b γ, then L c f z ∈ C p,s,b γ.
Proof Consider the following:
f z ∈ C p,s,b
γ
⇐⇒ zfz
p ∈ S∗
p,s,b
γ
⇒ L c
zfz
p
∈ S∗
p,s,b
γ
⇐⇒ z
p
Lcf z∈ S∗
p,s,b
γ
⇐⇒ L cf z ∈ C p,s,b
γ
.
3.8
This completes the proof ofTheorem 3.2
Theorem 3.3 Let c > −γ, 0 ≤ γ < p.If fz ∈ K p,s,b β, γ then L c fz ∈ K p,s,b β, γ.
Trang 9Proof Let f z ∈ K p,s,b β, γ Then, by definition, there exists a function gz ∈ S∗
p,s,b γ such
that
Re z
J s,b f z
Js,bg z
> β z ∈ U. 3.9 Then,
z
J s,b L c f z
J s,b L c g z − β
p − βh z 3.10
where hz c1z c2z2 · · · From 3.3 and 3.10, we have
z
J s,b f z
J s,b g z
J s,b
zfz
J s,b g z
z
J s,b L c
zfz cJ s,b L c
zf
z
z
J s,b L c
g z cJ s,b L c g z
z
J s,b L c zfz/J s,b L c
g z cJ s,b L c
zfz/J s,b L c
g z
z
J s,b L c g z/J s,b L c
g z c .
3.11
Since gz ∈ S∗
p,s,b γ, then fromTheorem 3.1, we have L c g ∈ S∗
p,s,b γ.
Let
z
J s,b L c
g z
J s,b L c
g z
p − γH z γ, 3.12
where Re Hz > 0z ∈ U Using 3.11, we have
z
J s,b f z
J s,b g z
z
J s,b L c
zfz/J s,b L c
g
cp − βh z β
p − γH z γ c . 3.13
Also,3.10 can be written as
z
J s,b L c
f z J s,b L c
g zp − βh z β. 3.14 Differentiating both sides, we have
z
z
J s,b L c f z zJ s,b L c g zp − βh z βp − βzhzJ s,b L c g z, 3.15 or
z
z
J s,b L c f z
Js,bLc
g z
z
Js,bLc
zfz
Js,bLc
g z
p − βzhz p − βh z β1− γH z γ.
3.16
Trang 10Now, from3.13 we have
z
J s,b f z
Js,bg z − β
p − βh z
p − βzhz
p − γH z γ c . 3.17
We form the function ψu, v by taking u hz, v zhz in 3.17 as follows
ψ u, v p − βu
p − βv
p − γH z γ c . 3.18
It is clear that the function ψu, v defined in D C × C by 3.18 satisfies conditions
i and ii ofLemma 2.2 To verify the conditioniii, we proceed as follows:
Re ψiu2, v1
p − βv1
p − γh1
x, y
γ c
p − γh1
x, y
γ c2p − γh2
x, y2, 3.19
where Hz h1x, y ih2x, y, h1x, y and h2x, y being the functions of x and y and
Re Hz h1x, y > 0.
By putting v1≤ −1/21 u2
2, we have
Re ψiu2, v1 ≤ −
p − β1 u2
2
p − γh1
x, y
γ c
2
p − γh1
x, y
γ c2p − γh2
x, y2 < 0. 3.20
Hence, Re hz > 0z ∈ U and L cf z ∈ K p,s,b β, γ Thus, we have L cf z ∈
Kp,s,b β, γ The proof ofTheorem 3.3is complete
Theorem 3.4 Let c > −γ, 0 ≤ γ < p If fz ∈ K∗
p,s,b β, γ, then L c f z ∈ K∗
p,s,b β, γ.
Proof Consider the following:
f z ∈ K∗
p,s,b
β, γ
⇐⇒ zfz ∈ K p,s,,b
β, γ
⇒ L c
zfz∈ K p,s,b
β, γ
⇐⇒ zLcf z∈ K p,s,b
β, γ
⇐⇒ L c f z ∈ K∗
p,s,b
β, γ
,
3.21
and the proof ofTheorem 3.4is complete
Acknowledgement
The authors would like to thank the referees of the paper for their helpful suggestions
Trang 111 A W Goodman, “On the Schwarz-Christoffel transformation and p-valent functions,” Transactions of the American Mathematical Society, vol 68, pp 204–223, 1950.
2 M K Aouf, “On a class of p-valent close-to-convex functions of order β and type α,” International Journal of Mathematics and Mathematical Sciences, vol 11, no 2, pp 259–266, 1988.
3 R J Libera, “Some radius of convexity problems,” Duke Mathematical Journal, vol 31, no 1, pp 143–
158, 1964
4 J.-L Liu, “Subordinations for certain multivalent analytic functions associated with the generalized
Srivastava-Attiya operator,” Integral Transforms and Special Functions, vol 19, no 11-12, pp 893–901,
2008
5 H M Srivastava and A A Attiya, “An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination,” Integral Transforms and Special Functions, vol 18, no 3-4, pp 207–216, 2007
6 J.-L Liu, “Notes on Jung-Kim-Srivastava integral operator,” Journal of Mathematical Analysis and Applications, vol 294, no 1, pp 96–103, 2004.
7 I B Jung, Y C Kim, and H M Srivastava, “The Hardy space of analytic functions associated with
certain one-parameter families of integral operators,” Journal of Mathematical Analysis and Applications,
vol 176, no 1, pp 138–147, 1993
8 J.-L Liu, “Some applications of certain integral operator,” Kyungpook Mathematical Journal, vol 43, no.
2, pp 211–219, 2003
9 H Saitoh, “A linear operator and its applications to certain subclasses of multivalent functions,”
S ¯urikaisekikenky ¯usho K¯oky ¯uroku, no 821, pp 128–137, 1993.
10 G S¸ S˘al˘agean, “Subclasses of univalent functions,” in Complex Analysis, vol 1013 of Lecture Notes in Mathematics, pp 362–372, Springer, Berlin, Germany, 1983.
11 I S Jack, “Functions starlike and convex of order α,” Journal of the London Mathematical Society, vol 3,
pp 469–474, 1971
12 S S Miller and P T Mocanu, “Second-order differential inequalities in the complex plane,” Journal of Mathematical Analysis and Applications, vol 65, no 2, pp 289–305, 1978.
13 S D Bernardi, “Convex and starlike univalent functions,” Transactions of the American Mathematical Society, vol 135, pp 429–446, 1969.
14 R J Libera, “Some classes of regular univalent functions,” Proceedings of the American Mathematical Society, vol 16, pp 755–758, 1965.
... Trang 3When p 1, the operator J s,bis well-known Srivastava-Attiya operator 5.
Using... families of integral operators,” Journal of Mathematical Analysis and Applications,
vol 176, no 1, pp 138–147, 1993
8 J.-L Liu, ? ?Some applications of certain integral operator, ”... class="text_page_counter">Trang 11
1 A W Goodman, “On the Schwarz-Christoffel transformation and p-valent functions,” Transactions of the American