1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article An Optimal Double Inequality between Power-Type Heron and Seiffert Means" docx

11 350 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 489,81 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Inequality2.17 and 2.18 together with the piecewise monotonicity of g4t imply that there exists λ2 ∈ 1, ∞ such that g3t is strictly increasing in 1, λ2 and strictly decreasing inλ2, ∞..

Trang 1

Volume 2010, Article ID 146945, 11 pages

doi:10.1155/2010/146945

Research Article

An Optimal Double Inequality between

Power-Type Heron and Seiffert Means

1 Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China

2 Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Correspondence should be addressed to Yu-Ming Chu,chuyuming2005@yahoo.com.cn

Received 29 August 2010; Accepted 16 November 2010

Academic Editor: Alexander I Domoshnitsky

Copyrightq 2010 Yu-Ming Chu et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

For k ∈ 0, ∞, the power-type Heron mean H k a, b and the Seiffert mean Ta, b of two positive real numbers a and b are defined by H k a, b  a k  ab k/2  b k /3 1/k , k / 0; Hk a, b ab,

k  0 and Ta, b  a − b/2 arctana − b/a  b, a / b; Ta, b  a, a  b, respectively In this

paper, we find the greatest value p and the least value q such that the double inequality H p a, b <

Ta, b < Hq a, b holds for all a, b > 0 with a / b.

1 Introduction

For k ∈ 0, ∞, the power-type Heron mean H k a, b and the Seiffert mean Ta, b of two positive real numbers a and b are defined by

H k a, b 



a k  ab k/2  b k

3

1/k

, k / 0,

1.1

Ta, b 

a − b

2 arctana − b/a  b, a / b,

respectively

Trang 2

Recently, the means of two variables have been the subject of intensive research1

15 In particular, many remarkable inequalities for H k a, b and Ta, b can be found in the

literature16–20

It is well known that H k a, b is continuous and strictly increasing with respect to

k ∈ 0, ∞ for fixed a, b > 0 with a / b Let Aa, b  a  b/2, Ia, b  1/eb b /a a1/b−a,

La, b  b − a/log b − log a, Ga, b ab, and Ha, b  2ab/a  b be the arithmetic,

identric, logarithmic, geometric, and harmonic means of two positive numbers a and b with

a / b, respectively Then

min{a, b} < Ha, b < Ga, b < La, b < Ia, b < Aa, b < max{a, b} 1.3

For p ∈ R, the power mean M p a, b of order p of two positive numbers a and b is

defined by

M p a, b 

a p  b p 2

1/p

, p / 0,

ab, p  0.

1.4

The main properties for power mean are given in21

In16, Jia and Cao presented the inequalities

H0a, b  Ga, b < La, b < H p a, b < M q a, b,

Aa, b < H log 3/ log 2 a, b 1.5

for all a, b > 0 with a / b, p ≥ 1/2, and q ≥ 2/3p.

S´andor22 proved that

Ia, b > H1a, b 1.6

for all a, b > 0 with a / b.

In19, Seiffert established that

M1a, b < Ta, b < M2a, b 1.7

for all a, b > 0 with a / b.

The purpose of this paper is to present the optimal upper and lower power-type Heron mean bounds for the Seiffert mean Ta, b Our main result is the followingTheorem 1.1

Theorem 1.1 For all a, b > 0 with a / b, one has

H log 3/ logπ/2 a, b < Ta, b < H 5/2 a, b, 1.8

and H log 3/ logπ/2 a, b and H 5/2 a, b are the best possible lower and upper power-type Heron mean

bounds for the Seiffert mean Ta, b, respectively.

Trang 3

2 Lemmas

In order to prove our main result,Theorem 1.1, we need two lemmas which we present in this section

Lemma 2.1 If k  log 3/ logπ/2  2.43 and t > 1, then

− 24k − 2k  3k  43k  2t k8  48kk − 1k  33k − 2t k6

− k  4k  6k  84k − 7t8< 0. 2.1

Proof For t > 1, we clearly see that

− 24k − 2k  3k  43k  2t k8  48kk − 1k  3

× 3k − 2t k6 − k  4k  6k  84k − 7t8

< t8 −24k − 2k  3k  43k  2t2 48kk − 1k  3

×3k − 2t − k  4k  6k  84k − 7.

2.2

Let

ht  −24k − 2k  3k  43k  2t2 48kk − 1k  3

× 3k − 2t − k  4k  6k  84k − 7. 2.3

Then

h1  68k4− 281k3− 1010k2 2072k  2496  −104.992 < 0 2.4

and ht is strictly decreasing in 1, ∞ because of kk − 1k  33k − 2/k − 2k  3k 

43k  2 < 1 for k  log 3/ logπ/2

Therefore,Lemma 2.1follows from2.2–2.4 together with the monotonicity of ht.

Lemma 2.2 If k  log 3/ logπ/2  2.43 , t ∈ 1, ∞, and gt  −8t 4k−4  8t 4k−6 2 −

kt 3k2  2kt 3k − 2k  2t 3k−2  2k − 4t 3k−4  10 − kt 3k−6  7 − 4kt 2k2  24k − 1t 2k − 24k 

5t2k−2 24k−1t 2k−4 7−4kt 2k−6 10−kt k2 2k−4t k −2k2t k−2 2kt k−4 2−kt k−6 8t2−8,

then there exists λ ∈ 1, ∞ such that gt > 0 for t ∈ 1, λ and gt < 0 for t ∈ λ, ∞.

Trang 4

Proof Let g1t  gt/t, g2t  t9−kg

1t, g3t  g

2t/2t, g4t  g

3t/2t, g5t  g

4t/kt,

g6t  g

5t/t, and g7t  t9−kg

6t Then elaborated computations lead to

lim

g1t  −32k − 1t 4k−6  162k − 3t 4k−8  2 − k3k  2t 3k

6k2t 3k−2 − 2k  23k − 2t 3k−4  2k − 43k − 4t 3k−6

3k − 210 − kt 3k−8  2k  17 − 4kt 2k  4k4k − 1t 2k−2

−4k − 14k  5t 2k−4  4k − 24k − 1t 2k−6  27 − 4k

×k − 3t 2k−8  k  210 − kt k  2kk − 4t k−2

−2k − 2k  2t k−4  2kk − 4t k−6  2 − kk − 6t k−8  16,

2.7

lim

g2t  −64k − 12k − 3t 3k2  64k − 22k − 3t 3k  3k2 − k

×3k  2t 2k8  6k23k − 2t 2k6 − 2k  23k − 23k − 4t 2k4

6k − 2k − 43k − 4t 2k2  3k − 210 − k3k − 8t 2k

4kk  17 − 4kt k8  8kk − 14k − 1t k6 − 8k − 1

×k − 24k  5t k4  8k − 2k − 34k − 1t k2  4k − 4

×k − 37 − 4kt k  kk  210 − kt8 2kk − 2k − 4t6

−2k − 2k − 4k  2t4 2kk − 4k − 6t2 2 − kk − 6k − 8,

2.10

g21  1445 − 2k > 0, 2.11 lim

g3t  −32k − 12k − 33k  2t 3k  96kk − 22k − 3t 3k−2

3k2 − kk  43k  2t 2k6  6k2k  33k − 2t 2k4

−2k  223k − 23k − 4t 2k2  6k  1k − 2k − 4

×3k − 4t 2k  3kk − 210 − k3k − 8t 2k−2  2kk  1

×7 − 4kk  8t k6  4kk − 1k  64k − 1t k4

−4k − 1k − 2k  44k  5t k2  4k − 2k − 3k  2

×4k − 1t k  2kk − 4k − 37 − 4kt k−2  4kk  2

×10 − kt6 6kk − 2k − 4t4− 4k − 2k − 4k  2t2

2kk − 4k − 6,

2.13

Trang 5

g31  725k − 25 − 2k > 0, 2.14 lim

g4t  −48kk − 12k − 33k  2t 3k−2  48kk − 22k − 3

×3k − 2t 3k−4  3k2 − kk  3k  43k  2t 2k4

6k2k  2k  33k − 2t 2k2 − 2k  1k  223k − 2

×3k − 4t 2k  6kk  1k − 2k − 43k − 4t 2k−2

3kk − 1k − 210 − k3k − 8t 2k−4  kk  1k  6

×7 − 4kk  8t k4  2kk − 1k  4k  64k − 1t k2

−2k − 1k − 2k  2k  44k  5t k  2kk − 2k − 3

×k  24k − 1t k−2  kk − 2k − 3k − 47 − 4kt k−4

12kk  210 − kt4 12kk − 2k − 4t2− 4k − 2k − 4k  2,

2.16

g41  4 −318k3 885k2− 210k − 72  304.99 > 0, 2.17

lim

g5t  −48k − 12k − 33k − 23k  2t 3k−4  48k − 22k − 3

×3k − 23k − 4t 3k−6  62 − kk  2k  3k  43k  2

×t 2k2  12kk  1k  2k  33k − 2t 2k − 4k  1k  22

×3k − 23k − 4t 2k−2  12k − 1k − 2k − 4k  13k − 4

×t 2k−4  6k − 1k − 2210 − k3k − 8t 2k−6  k  1k  4

×k  6k  87 − 4kt k2  2k − 1k  2k  4k  6

×4k − 1t k − 2k − 1k − 2k  2k  44k  5t k−2

2k − 22k − 3k  24k − 1t k−4  k − 2k − 3k − 42

×7 − 4kt k−6  48k  210 − kt2 24k − 2k − 4,

2.19

g51  4 −1038k3 3549k2− 3360k  2196  323.50 > 0, 2.20

lim

Trang 6

g6t  −48k − 12k − 33k − 23k − 43k  2t 3k−6  144k − 22

×2k − 33k − 23k − 4t 3k−8  122 − kk  1k  2

×k  3k  43k  2t 2k  24k2k  1k  2k  3

×3k − 2t 2k−2 − 8k − 1k  1k  223k − 23k − 4t 2k−4

24k − 1k − 22k − 4k  13k − 4t 2k−6  12k − 1

×k − 22k − 310 − k3k − 8t 2k−8  k  1k  2

×k  4k  6k  87 − 4kt k  2kk − 1k  2k  4

×k  64k − 1t k−2 − 2k − 1k − 22k  2k  4

×4k  5t k−4  2k − 22k − 3k − 4k  24k − 1t k−6

k − 2k − 3k − 42k − 67 − 4kt k−8  96k  210 − k,

g61  4 −3348k4 16233k3− 30204k2 28092k − 6768  −2933.37 < 0, 2.22

g7t  −144k − 1k − 22k − 33k − 23k − 43k  2t 2k2

−144k − 222k − 33k − 23k − 48 − 3kt 2k − 24kk − 2

×k  1k  2k  3k  43k  2t k8  48k2k − 1k  1

×k  2k  33k − 2t k6 − 16k − 1k − 2k  1k  22

×3k − 23k − 4t k4  48k − 1k − 223 − k4 − kk  1

×3k − 4t k2 − 24k − 1k − 223 − k4 − k10 − k8 − 3k

×t k − kk  1k  2k  4k  6k  84k − 7t8 2k

×k − 1k − 2k  2k  4k  64k − 1t6 2k − 1

×k − 224 − kk  2k  44k  5t4− 2k − 223 − k

×4 − k6 − kk  24k − 1t2 k − 23 − kk − 42

×6 − k4k − 78 − k.

2.23

From the expression of g7t andLemma 2.1, we get

g7t < − 144k − 1k − 22k − 33k − 23k − 43k  2  48k − 1

× k − 223 − k4 − kk  13k − 4  2kk − 1k − 2k  2

× k  4k  64k − 1  2k − 1k − 224 − kk  2k  4

×4k  5  k − 23 − kk − 426 − k8 − k4k − 7 t 2k2

 kk  1k  2 −24k − 2k  3k  43k  2t k8  48k

×k − 1k  33k − 2t k6 − k  4k  6k  84k − 7t8

Trang 7

 140k7− 9353k6 52543k5− 103636k4 51700k3 88448k2

−131968k  54016 t 2k2  kk  1k  2

× −24k − 2k  3k  43k  2t k8  48kk − 1k  33k − 2t k6

−k  4k  6k  84k − 7t8

 −20221.36 t 2k2  kk  1k  2

× −24k − 2k  3k  43k  2t k8  48kk − 1k  33k − 2t k6

−k  4k  6k  84k − 7t8

< 0.

2.24

From2.24, we know that g6t is strictly decreasing in 1, ∞ Then 2.22 implies that g5t

is strictly decreasing in1, ∞.

From 2.20 and 2.21 together with the monotonicity of g5t, we clearly see that there exists λ1∈ 1, ∞ such that g4t is strictly increasing in 1, λ1 and strictly decreasing in

1, ∞.

Inequality2.17 and 2.18 together with the piecewise monotonicity of g4t imply that there exists λ2 ∈ 1, ∞ such that g3t is strictly increasing in 1, λ2 and strictly decreasing in2, ∞.

The piecewise monotonicity of g3t together with 2.14 and 2.15 leads to the fact

that there exists λ3 ∈ 1, ∞ such that g2t is strictly increasing in 1, λ3 and strictly decreasing in3, ∞.

From2.11 and 2.12 together with the piecewise monotonicity of g2t, we conclude that there exists λ4 ∈ 1, ∞ such that g1t is strictly increasing in 1, λ4 and strictly decreasing in4, ∞.

Equations2.8 and 2.9 together with the piecewise monotonicity of g1t imply that there exists λ5 ∈ 1, ∞ such that gt is strictly increasing in 1, λ5 and strictly decreasing in

5, ∞.

Therefore, Lemma 2.2 follows from 2.5 and 2.6 together with the piecewise

monotonicity of gt.

Proof of Theorem 1.1 Without loss of generality, we assume that a > b We first prove that Ta, b < H 5/2 a, b Let t 4

a/b > 1, then from 1.1 and 1.2 we have

log T a, b − log H 5/2 a, b  log t4− 1

2 arctan

t4− 1/

t4 1 −

2

5log

t10 t5 1

Trang 8

ft  log t4− 1

2 arctan

t4− 1/

t4 1 −

2

5log

t10 t5 1

Then simple computations lead to

lim

t → 1 ft  0,



2t6 t5 t  2



t4− 1t10 t5 1arctan

t4− 1/

t4 1f1t,

3.3

where f1t  arctant4− 1/t4 1 − 2t4− 1t10 t5 1/t8 12t6 t5 t  2 Note that

lim

t → 1 f1t  0,

f

1t  − 2



t2 1t  12t − 14

1  t822t6 t5 t  22f2t,

3.4

where

f2t  t18 2t17 4t16 6t15− 8t12 6t11 21t10 28t9

 21t8 6t7− 8t6 6t3 4t2 2t  1 > 0 3.5

for t > 1.

Therefore, T a, b < H 5/2 a, b follows from 3.1–3.5

Next, we prove that Ta, b > H log 3/ logπ/2 a, b Let k  log 3/ logπ/2  2.43 and ta/b > 1, then 1.1 and 1.2 lead to

log T a, b − log H k a, b  log t2− 1

2 arctant2− 1/t2 1−

1

klog

t 2k  t k 1

Let

Ft  log2 arctantt22− 1

− 1/t2 1−

1

klog

t 2k  t k 1

Then simple computations lead to

lim

t → 1 Ft  lim

Ft  2t 2k−1  t k1  t k−1  2t

t2− 1t 2k  t k 1arctant2− 1/t2 1F1t, 3.9

Trang 9

where F1t  arctant2− 1/t2 1 − 2t2− 1t 2k  t k  1/t4 12t 2k−2  t k  t k−2 2 Note that

lim

lim

t → ∞ F1t  π

Ft   2t3

t4 12

2t 2k−2  t k  t k−2 22F2t, 3.12

where

F2t  −8t 4k−4  8t 4k−6  2 − kt 3k2  2kt 3k − 2k  2t 3k−2

 2k − 4t 3k−4  10 − kt 3k−6  7 − 4kt 2k2

 24k − 1t 2k − 24k  5t 2k−2  24k − 1t 2k−4

 7 − 4kt 2k−6  10 − kt k2  2k − 4t k

− 2k  2t k−2  2kt k−4  2 − kt k−6  8t2− 8.

3.13

From3.12 and 3.13 together withLemma 2.2, we clearly see that there exists λ

1, ∞ such that F1t is strictly increasing in 1, λ and strictly decreasing in λ, ∞.

Equations3.9–3.11 and the piecewise monotonicity of F1t imply that there exists

μ ∈ 1, ∞ such that Ft is strictly increasing in 1, μ and strictly decreasing in μ, ∞ Then

from3.8 we get

for t > 1.

Therefore, Ta, b > H log 3/ logπ/2 a, b follows from 3.6 and 3.7 together with

3.14

At last, we prove that H log 3/ logπ/2 a, b and H 5/2 a, b are the best possible lower and

upper power-type Heron mean bounds for the Seiffert mean Ta, b, respectively

For any 0 < ε < k  log 3/ logπ/2  2.43 and x > 0, from 1.1 and 1.2, one has

T1, 1  x 5/2−ε − H 5/2−ε 1, 1  x 5/2−ε Jx

3

25/2−ε

arctanx/x  2 5/2−ε , 3.15 lim

x → ∞

H kε x, 1

Tx, 1 

π

2 · 3−1/kε > π

2 · 3−1/k  1, 3.16

where Jx  3x 5/2−ε − 1  x 5/2−ε  1  x 5/4−ε/2  12 arctanx/x  2 5/2−ε

Trang 10

Let x → 0, making use of Taylor extension, we get

Jx  3x 5/2−ε− 25/2−ε



x

2 −x2

4 x3

12 o x3 5/2−ε

×



3

 15

4 − 3

2ε

x 

 13

8 −5

4ε

 5

4− ε 2

x2 o x2 

 1

8ε5 − 2εx 9/2−ε  o x 9/2−ε

.

3.17

Equations3.15 and 3.17 together with inequality 3.16 imply that for any 0 < ε < log 3/ logπ/2, there exist δ  δε > 0 and X  Xε > 1 such that T1, 1  x > H 5/2−ε 1, 1 

x for x ∈ 0, δ and H log 3/ logπ/2ε 1, x > T1, x for x ∈ X, ∞.

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grant no

11071069, the Natural Science Foundation of Zhejiang Province under Grant no Y7080106, and the Innovation Team Foundation of the Department of Education of Zhejiang Province under Grant no T200924

References

1 M.-K Wang, Y.-M Chu, and Y.-F Qiu, “Some comparison inequalities for generalized Muirhead and

identric means,” Journal of Inequalities and Applications, vol 2010, Article ID 295620, 10 pages, 2010.

2 B.-Y Long and Y.-M Chu, “Optimal inequalities for generalized logarithmic, arithmetic, and

geometric means,” Journal of Inequalities and Applications, vol 2010, Article ID 806825, 10 pages, 2010.

3 B.-Y Long and Y.-M Chu, “Optimal power mean bounds for the weighted geometric mean of classical

means,” Journal of Inequalities and Applications, vol 2010, Article ID 905679, 6 pages, 2010.

4 Y.-M Chu and B.-Y Long, “Best possible inequalities between generalized logarithmic mean and

classical means,” Abstract and Applied Analysis, vol 2010, Article ID 303286, 13 pages, 2010.

5 Y.-M Chu, Y.-F Qiu, M.-K Wang, and G.-D Wang, “The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean,” Journal of Inequalities and Applications, vol

2010, Article ID 436457, 7 pages, 2010

6 B Long, W Xia, and Y Chu, “An optimal inequality for power mean, geometric mean and harmonic

mean,” International Journal of Modern Mathematics, vol 5, no 2, pp 149–155, 2010.

7 Y.-M Chu and W.-f Xia, “Two optimal double inequalities between power mean and logarithmic

mean,” Computers & Mathematics with Applications., vol 60, no 1, pp 83–89, 2010.

8 X.-M Zhang, B.-Y Xi, and Y.-M Chu, “A new method to prove and find analytic inequalities,” Abstract

and Applied Analysis, vol 2010, Article ID 128934, 19 pages, 2010.

9 X.-M Zhang and Y.-M Chu, “A new method to study analytic inequalities,” Journal of Inequalities and

Applications, vol 2010, Article ID 698012, 13 pages, 2010.

10 Y.-M Chu and W.-f Xia, “Inequalities for generalized logarithmic means,” Journal of Inequalities and

Applications, vol 2009, Article ID 763252, 7 pages, 2009.

11 M.-y Shi, Y.-M Chu, and Y.-p Jiang, “Optimal inequalities among various means of two arguments,”

Abstract and Applied Analysis, vol 2009, Article ID 694394, 10 pages, 2009.

12 Y.-M Chu and W.-f Xia, “Two sharp inequalities for power mean, geometric mean, and harmonic

mean,” Journal of Inequalities and Applications, Article ID 741923, 6 pages, 2009.

... logarithmic mean and

classical means,” Abstract and Applied Analysis, vol 2010, Article ID 303286, 13 pages, 2010.

5 Y.-M Chu, Y.-F Qiu, M.-K Wang, and G.-D Wang, “The optimal. .. arithmetic and harmonic means for the Seiffert’s mean,” Journal of Inequalities and Applications, vol

2010, Article ID 436457, pages, 2010

6 B Long, W Xia, and Y Chu, ? ?An optimal inequality. .. prove and find analytic inequalities,” Abstract

and Applied Analysis, vol 2010, Article ID 128934, 19 pages, 2010.

9 X.-M Zhang and Y.-M Chu, “A new method to study analytic

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN