1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Heat Conduction Basic Research Part 15 ppt

12 255 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 336,36 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

J., 1989, The Multiple Reciprocity Method of Solving Transient Heat Conduction Problems, Advances in Boundary Elements, Vol.. and Sekiya, T., 1995a, Steady Thermal Stress Analysis by Imp

Trang 1

Numerical solutions are obtained using the interpolation functions for time and space If a

constant time interpolation and time step (t kt k1) are used, the time integral can be

treated analytically The time integrals for T p q t f*( , , , ) are given as follows:

*

1( , , , ) 1 1( )

4

F f

t

f

t T p q t d E a



*

2

F f

t

f t

 



where

2

f

r a

t t

Assuming that functions ( , )T Q and T Q( , )  remain constant over time in each time n

step, Eq (65) can be written in matrix form Replacing ( , )T Q and T Q( , )  with vectors n

Tf and Qf, respectively, and discretizing Eq (65), we obtain (Brebbia ,1984)

where B0 represents the effect of the pseudo-initial temperature Adopting a constant time

step throughout the analysis, the coefficients of the matrix at several time steps need to be

computed and stored only once

If there is heat generation, the following time integrals are used (Ochiai, 2001)

2

*

16

F

f

t

r

a

 



* 2

1

1 exp( )

8

F f

f

a

 



4

*

256

F

f

t

r

a

 



1 4ln( ) 4f 1 exp( f)] [2 ( )f

f

a

2ln( ) 2a f C 2a f 3 3exp( a f) 5 ]}a f

3

1 2

1 exp( ) ( , , , )

64

F f

f t

f

 



1

f

a

Trang 2

Additionally, the temperature gradient is given by differentiating Equation (65), and

expressed as:

2 * 1 0

[ ( , )

t

T Q

]

i

T p Q t

T Q

d d

*

0 1

( , , , ) ( , )

i f

( , )]

f

f i

T p Q t

x n

 

* 3 3

0

1

( , , , ) ( , )

m

i m

T p q t

x

1

( , , ,0) ( ,0)

i f

2 *

1( , , ,0) 0

( ,0)]

f

f i

T p Q t

T Q d d

 

*

3 1

( , , ,0) ( ,0)

M

m

i m

T p q t

The derivative of the polyharmonic function T P q t*f( , , , ) and the normal derivative with

respect to x i in Eq.(79) are explicitly given by

* 1

exp( )

i i

a

2 * 1

i

*

2( , , , )

i

T p q t x

2

r

ri  

2 *

2( , , , )

i

T p q t

x n

r

n r

* 3

1

8

i i

2 *

3

1

i

where r,ir/x i The time integrals for T*f/ and x i 2 *T P q t f( , , , ) /   in Eq (79) are x n i

given as follows:

*

2

F f

f

 



Trang 3

2 *

1( , , , )

F f

t t i

T p q t

d

x n

 

 

1

r

n r



* 2

1

( , , , )

8

F f

f t

a

 



F 2 *2( , , , )

f

t

t

i

T p q t

d

x n

 

 

r



3

2

64 1

F f

f

f

T p q t d r r

a

 



3

1 2

2

64 1

F f

t

t

f

r

n a

 



 

3 Numerical examples

To verify the accuracy of the present method, unsteady heat conduction in a circular region

with radius a, as shown in Fig 6, is treated with a boundary temperature given by

[1 cos( )]

H

We assume an initial temperature T0=0 C, and R denotes the distance from the center of

the circular region A two-dimensional state, in which there is no heat flow in the direction

perpendicular to the plane of the domain, is assumed Figure 6 also shows the internal

points used for interpolation A thermal diffusivity of  16 mm2/s and a radius of a=10

mm are assumed T =10 C H  in Eq (92) and a frequency of   / 2 rad/s are also

assumed The BEM results at R=0 and R=8 mm and the exact values are compared in Fig 7

The exact solution for the temperature distribution is given by (Carslaw, 1938)

ber a bei a

Trang 4

Fig 6 Circular region with temperature change at the boundary

Fig 7 Temperature history in circular region

sin

ber Rbei a ber abei R

t ber a bei a

3 2

2

s

t

where ber() and bei() are Kelvin functions, and s ( s=1, 2, ) are the roots of J a0( ) 0  Constant elements are used for boundary and time interpolation

Trang 5

Appendix A (3D)

The higher-order functions for 3D unsteady heat conduction are

*

2 , , ,

3/2

1

* 2

3/2 2

(1.5, ) 2

a

)]}

exp(

1 [ 3 1 ) , 5 1 ( 3 )

, 5 2 ( 3 ) , 2 ( 6 ) , 5 1 ( 3

{

12

2 / 1 2

/ 1 1

2 / 1 2

/

3

*

a a a

a a

a a

a r

{ (0.5, ) 2 (1.5, )1 2 [1 exp( )]}

4

2 / 1 2

/

a a a

n

r a a

a n

T

) , 5 0 ( [ 4

1 2 / 3

*

where (,) is an incomplete gamma function of the first kind (Abramowitz, 1970) and

r  r  Using Eqs (44) and (A-3), the polyharmonic function with a surface x

distribution is obtained as follows:

3/2

3

6u  2.5 ,u 6u  2.5 ,u

6u  1.5 ,u 6u  1.5 ,u 6 (2, ) 6 (2, ) uu

where

2

r A u

t

2

r A u

t

The time integral of Eq (62) can be obtained as follows:

*

4

F f

t

f

r

 



* 1

3/2 2

(1.5, ) 2

F f

t

f t

 



*

2( , , , )

F

f

t

t T p q t d



Trang 6

1

r

a



*

2

3/2

8

F

f

t

t

f



*

3( , , , )

F

f

t

t T p q t d

1

r

a



f

a a

f

a a

41/2

f

a

 3 (1.5, )f 12 3 ( 0.5, )f

f

a

f

a a

    (A-12)

*

3( , , , )

F

f

t

t

T p q t d

n

 

1



1

3 (2.5, )f

f

a a

f

a

2

3 (1.5, )f 3 ( 0.5, )]f

f

a

where

2

f

r a

t t

and (,) is an incomplete gamma function of the second kind (Abramowitz, 1970) The time

integral of Eq (A-5) can be obtained as follows:

*

3 ( , , , )

F

f

t

B

t T p q t d

5

a

1

5 a f a f

1

1

4 (2, f)

f

a

a

1

1

3 (2.5, f)

f

a a

1

1

f

a

1

5

f

a

1 5/2

1

5 a f a f

1

2

f

a

   3 ( 2.5,a1f)}, (A-15) where

2

f

r A a

t t

For the sake of conciseness, the terms involving u2 in Eq (A-5) are omitted The derivative

of the polyharmonic function T P q t f*( , , , ) and the normal derivative with respect to x i are

explicitly given by

* 1

exp( )

Trang 7

* 1

i

T

n x

 

1

16 [ (k t)]  n i ur n r j j ia (A-18)

* 2 3/2 2

, 2 2

a

* 2

i

T

n x

 

2 r n iaa r n r i j j

* 3 3/2

1

8

2 *

3

3

{ [ (0.5, ) (1.5, )] , , [ (0.5, ) (1.5, )]}

i

T

3/2 3

1/2

3

B

6u  2.5 ,u

2

1

1

2u

6u  1.5 ,u 6 (2, ) u

1

2{3u (1.5 , )u

1

6 (2 , ) u

3u  2.5 ,u

3u  1.5 ,u

1

3u

3u exp( u )}]

The time integrals of Eqs (A-18), (A-20) and (A-22) can be obtained as follows:

* 1

F f

t t i

T d

n x

 

 

2

2kr r n r i j j a f n i a f

*

2

F

f

t

t

i

T

d

n x

 

 

a

(A-25)

2 *

3

3/2

192

F

f

t

n x

(A-26)

*

3

F

f

T d

x

1/2

5 a f a f

1

4 2, f

f

a a

1

3 2.5, f

f

a a

f

a

Trang 8

  2  

5

f

a

5 a f a f

2 / 3 2

f

a

   3 ( 2.5, )}a f (A-27)

Appendix B (1D)

The functions for 1D unsteady heat conduction are

*

2 , , ,

2

r

* 2

1/2

2

12

r

1 2

, , ,

4

T p q t r r

where (,) is an incomplete gamma function of the first kind (Abramowitz, 1970) The time

integral of Eqs (49) and (B-1)-(B-4) can be obtained as follows:

2

F f

f t

f

a r

a

 



*

1( , , , )

F f

t t

T p q t

d n

 

1 (0.5, )

r

a

n 

*

2( , , , )

F

f

t

t T p q t d

1 2 3 2 3

8

r



(B-7)

*

2( , , , )

F

f

t

t

T p q t

d n

 

r r



5

*

2

2880

F

f

t

t

f f

f

r

a a



3

exp( ) 2exp( )

3 2

F

f

t



Trang 9

where

2

f

r a

t t

Appendix C (Linear time interpolation)

The time integrals of Eq (62) using linear time interpolation in the two-dimensional case can

be obtained as follows:

1

1

*

1

1

f

f

1

1

*

1

1

f

f

t

1

*

1

f

f

t

f

t

T

n

r

1

* 1 1

f f

t f t

T

n

r

1

*

2

f

f

t

f

t tT p q t d

256

f

a



2

1

r

E a

2

r

E a

1

*

1 2

f

f

t

f

tt T p q t d

256

f

a

2

1

r E a

Trang 10

r

E a

1

*

1 2

1

8

f

f



2

2 2

2 2

f

f

t t

r

t t

r

(C-7)

1

4

*

9216

f

f

t

r

a





1

2

2 ( ) 2ln( ) 2f f 3exp( f) 3 5 f

f

a



1

1

f

a



1

2 1

2 ( ) 2ln( ) 2f f 3exp( f) 3 5 f

f

a



2

1

f

a r

E a

a



2 1

f

a

2

3 1

f

a



1

f

a

E a

a



1

2

18 ( ) 18ln( ) 18f f 9 f exp( f) 27

f

a

1

3

}

f

a

Trang 11

* 3

f

f

t

f

t

T

n

1536

f

 

 

 

4



2

f

E a

r



2 1

f

a



1

E a

4



1 1

( ) 2

f

E a

(C-9)

4 References

Abramowitz, M and Stegun, A Eds., (1970), Handbook of Mathematical Functions, pp 255-263,

Dover, New York

Brebbia, C A., Tells, J C F and Wrobel, L C., (1984), Boundary Element Techniques-Theory

and Applications in Engineering, pp 47-107, Springer-Verlag, Berlin

Carslaw, H S and Jaeger, J C., (1938), Some Problems in the Mathematical Theory of the

Conduction of Heat, Phil Mag., Vol 26, pp 473-495

Dyn, N., (1987), Interpolation of Scattered Data by Radial Functions, in Topics in Multivariate

Approximation, Eds C K Chui, L L Schumaker and F I Utreras, pp 47-61,

Academic Press, London

Micchelli, C A., (1986), Interpolation of Scattered Data, Constructive Approximation, Vol 2, pp

12-22

Nowak, A J., (1989), The Multiple Reciprocity Method of Solving Transient Heat

Conduction Problems, Advances in Boundary Elements, Vol 2, pp 81-93, Eds C A

Brebbia and J J Connors, Computational Mechanics Publication, Southampton, Springer-Verlag, Berlin

Nowak, A J and Neves, A C., (1994), The Multiple Reciprocity Boundary Element Method,

Computational Mechanics Publication, Southampton, Boston

Ochiai, Y and Sekiya, T., (1995a), Steady Thermal Stress Analysis by Improved

Multiple-Reciprocity Boundary Element Method, Journal of Thermal Stresses, Vol 18, No 6,

pp 603-620

Ochiai, Y., (1995b), Axisymmetric Heat Conduction Analysis by Improved

Multiple-Reciprocity Boundary Element Method, Heat Transfer-Japanese Research, Vol 23, No

6, pp 498-512

Ochiai, Y and Sekiya, T., (1995c), Generation of Free-Form Surface in CAD for Dies,

Advances in Engineering Software, Vol 22, pp 113-118

Trang 12

Ochiai, Y., (1996a), Generation Method of Distributed Data for FEM Analysis, JSME

International Journal, Vol 39, No 1, pp 93-98

Ochiai, Y and Sekiya, T., (1996b), Steady Heat Conduction Analysis by Improved

Multiple-Reciprocity Boundary Element Method, Engineering Analysis with Boundary

Elements, Vol 18, pp 111-117

Ochiai, Y and Kobayashi, T., (1999), Initial Stress Formulation for Elastoplastic Analysis by

Improved Multiple-Reciprocity Boundary Element Method, Engineering Analysis

with Boundary Elements, Vol 23, pp 167-173

Ochiai, Y and Yasutomi, Z., (2000), Improved Method Generating a Free-Form Surface Using

Integral Equations, Computer Aided Geometric Design, Vol 17, No 3, pp 233-245 Ochiai, Y., (2001), Two-Dimensional Unsteady Heat Conduction Analysis with Heat

Generation by Triple-Reciprocity BEM, International Journal of Numerical Methods in

Engineering, Vol 51, No 2, pp 143-157

Ochiai, Y., (2003a), Multidimensional Numerical Integration for Meshless BEM, Engineering

Analysis with Boundary Elements, Vol 27, No 3, pp 241-249

Ochiai, Y., (2003b), The Multiple-Reciprocity Method for Elastic Problems with Arbitrary

Body Force, Transformation of Domain Effects to the Boundary, Y F Rashed Ed.,

Chapter 5, ISBN 1-85312-896-1, WIT Press

Ochiai, Y and Sladek, V., (2005), Numerical Treatment of Domain Integrals without Internal

Cells in Three-Dimensional BIEM Formulations, CMES(Computer Modeling in

Engineering & Sciences) Vol 6, No 6, pp 525-536

Ochiai, Y., Sladek, V and Sladek, S., (2006), Transient Heat Conduction Analysis by

Triple-Reciprocity Boundary Element Method, Engineering Analysis with Boundary

Elements, Vol 30, No 3, pp 194-204

Ochiai, Y and Takeda, S., (2009a), Meshless Convection-Diffusion Analysis by

Triple-Reciprocity Boundary Element Method, Engineering Analysis with Boundary

Elements, Vol.33, No.2, pp.168-175

Ochiai, Y and Kitayama, Y., (2009b),Three-dimensional Unsteady Heat Conduction Analysis

by Triple-Reciprocity Boundary Element Method, Engineering Analysis with

Boundary Elements, Vol 33, No 6, pp 789-795

Partridge, P W., Brebbia, C A and Wrobel, L C., (1992), The Dual Reciprocity Boundary

Element Method, Computational Mechanics Publications, pp 223-253

Sladek, J and Sladek, V., (2003), Local Boundary Integral Equation Method for Heat

Conduction Problem in an Anisotropic Medium, Proceedings of ICCES2003, Chap 5

Tanaka, M., Matsumoto, T and Takakuwa, S., (2003), Dual Reciprocity BEM Based on

Time-Stepping Scheme for the Solution of Transient Heat Conduction Problems,

Boundary Elements XXV, WIT Press, pp 299-308

Wrobel, L C., (2002), The Boundary Element Method, Vol 1, John Wiley & Sons, West Sussex, pp

97-117

Ngày đăng: 18/06/2014, 22:20

TỪ KHÓA LIÊN QUAN