MINISTRYOFEDUCATIONANDTRAINING VINH UNIVERSIT Y LEKHANHHUNG ONTHEEXISTENCEOFFIXEDPOINTFO R SOMEMAPPINGCLASSES INSPACESWITHUNIFORMSTRUCTUREAND APPLICATIONS Speciality Mathematical A n a l y s i s Code[.]
Trang 3d)intoitselfhasauniquefixedpoint.ThebirthoftheBanachcontractionm a p p i n g p r i n c i p l
e a n d i t s a p p l i c a ti o n t o s t u d y t h e e x i s t e n c e o f s o l u ti o n s of differential equations marks a new
(BW)d(Tx,Ty)≤ϕd (x,y), forallx,y∈X,whereϕ:R+→R+isasemiright
uppercon ti n u ous f u n cti o n a n d s a ti s fie s 0 ≤ϕ(t)<tf ora ll t ∈R+
In2001,B.E.Roades,whileimprovingandextendingaresultofY.I.Alberand
Trang 4S.Guerre-Delabriere,gaveacontractive condition oftheform
(R1)d(Tx,Ty)≤d(x, y)−ϕd(x, y), for allx, y∈X,whereϕ:R+→R+is
acontinuous,monotoneincreasingfunctionsuchthatϕ(t)=0ifandonlyift=0.
Followingthewayofreducingcontractiveconditions,in2008,P.N.DuttaandB
S.Choudhuryint roduceda c ontra ctive conditionof t h efor m
(DC)ψd(Tx,Ty)≤ψ d(x, y)−ϕ d(x, y) , for allx, y∈X,whereψ, ϕ:R+→R+is a
continuous, monotone non-decreasing functions such thatψ(t) = 0 =ϕ(t) ifandonlyift=0.
In 2009, R K Bose and M K Roychowdhury introduced the notion of new eralized weak contractive mappings with the following contractive condition inordertostudycommonfixedpoints ofmappings
(SVV)α (x,y)d(Tx,Ty)ψ d(x,y) ,f o r a l l x , yX whereψ :R R isam o n o t o n e n o n
-d e c r e a s i n g f u n c ti o n s a ti s f y i n gΣ+∞ψ
n (t)< + ∞fora l l t > 0 a n d α:X×X→ R+
1.3 Inrecentyears,manymathematicianshavecontinuedthetrendofgeneralizingcontractive
conditions for mappings in partially ordered metric spaces Following thistrend, in 2006, T G Bhaskar and V.Lakshmikantham introducedthe notion ofcoupled fixed points of
mappingsF:X×X→Xwith the mixed monotone propertyand obtained some results for
metricspacessatisfyingthecontractivecondition
(BL)T h e r e e x i s t s k ∈ [0,1)s u c h t h a t d F (x,y),F(u,v) ≤k
d(x,u)+d(y,v), fora l l x , y,u,v∈ Xs u c h t h a t x ≥u,y≤ v.
In 2009, by continuing extending coupled fixed point theorems, V
Lakshmikanthamand L Ciric obtained some results for the class of mappingsF:X×X→Xwithg-mixed monotone
spaceintoitselfandFs a ti s fi e s thefollowingcontractive condition
(LC)dF (x,y),F(u,v)≤ϕ
d g (x),g(u)+d g (y),g(v)
,
Trang 5(AK)T h e r e e x i s t s a f u n c ti o n φs u c h thatforallx≤u,y≥v,z≤ww e hav
e
fora l l x , y,u,v∈ Xw i t h g (x)≥g(u),g(y)≤g(v)a n d F (X× X)⊂g(X).
In2011,V.BerindeandM.Borcutintroducedthenotionoftriplefixedpointsforthe class of
mappingsF:X×X×X→Xand obtained some triple fixed pointtheorems for mappings
metricspacessatisfyingthe contractive condition
(BB) There exists constantsj, k, l∈ [0,1) such thatj+k+l <1 satisfydF(x, y, z),F(u, v, w)≤jd(x, u)+kd(y, v)+ld(z, w),for allx, y, z, u, v, w∈Xwithx≥u,y ≤v,z≥w.
After that, in 2012, H Aydi and E Karapinar extended the above resultandobtained some triple fixed point theorems for the class of
mappingF:X×X×X→Xwith mixed monotone property in partially ordered metric spaces and satisfying thefollowingweakcontractive condition
d TF (x,y,z),TF(u,v,w)≤
φ maxd (Tx,Tu),d(Ty,Tv),d(Tz,Tw)}
1.4. The development of fixed point theory is motivated from its popular plications, especially in theory of differential and integral equations, where thefirstimpressioni s t h e a p p l i c a ti o n o ft h e B a n a c h c o n t r a c ti o n m a p p i n g p r i n
ap-c i p l e t o s t u d y theexistenap-ceofsolutions ofdifferential equations
Inthemoderntheoryofdifferentialandintegralequations,provingtheexistenceofsolutions orapproximating the solutions are always reduced to applying appropriatelycertain fixed point theorems.Forboundary problems with bounded domain, fixedpoint theorems in metric spaces are
forboundaryproblemswithunboundeddomain,fixedpointtheoremsinmetricspacesarenotenoughtodothatwork.S o , inthe70soflastcentury,alongwithseekingtoextendtomappingclasses,onewaslookingtoextendtoclassesofwiderspaces.O n e oftypicaldirections of this expansion is seeking toextend results on fixed points of mappings inmetric spaces to the class of local convex spaces, more
whichhasa tt r a ct e d t h e a tt e n ti o n o f ma n y m a t h e m a ti c a l , n ot a b l y V G A n g e l ov
In 1987, V G Angelov considered the family of real functions
Φ={φ α:α∈I}such that for eachα∈I,φα:R+→R+is a monotone increasing,
continuous,φ α (0)=0 and 0<φ α (t)<tfor allt>0.Then he introduced the notion contractivemappings,whicharemappingsT: M→ Xsatisfying
ofΦ-(A)d α (Tx,Ty)≤φ αdj(α) (x,y)forallx,y∈Ma n d forallα∈I,whereM⊂ X
ando b t a i n ed s o m er es u l t s o n fi x e d p o i n t s o f t h e c l a s s o f t h os e m a p p i n g s Byi n t r o-
Trang 6ducingt h e n o ti o n o f s p a c e s w i t h j
-boundedp r o p e r t y , V G A n g e l o v o b t a i n e d s o m e resultsontheuniqueexistenceofafixed pointoftheabovemappingclass
Following the direction of extending results on fixed points to the class oflocalconvex spaces, in 2005, B C Dhage obtained some fixed point theorems in
Banachalgebrasb y s t u d y i n g s o l u ti o n s o f o p e r a t o r e q u a ti o n s x = Ax Bx w h e r e A :
X → X,B:S→Xare two operators satisfying thatAisD-Lipschitz,Bis completelycontinuous andx=AxByimpliesx∈Sfor ally∈S, whereSis a closed, convexand bounded subset of the Banach algebraX,such that it satisfies the
contractivecondition
(Dh)||T x−Ty||≤φ||x−y||for allx, y∈X,whereφ:R+→R+is a
non-decreasingcontinuous function, φ(0)=0.
1.5 Recently,togetherwiththeappearanceofclassesofnewcontractivemappings,and new
types of fixed points in metric spaces, the study trend on the fixed pointtheory has advanced steps of strong
toextendresu lt s in t h e fi x ed p oi n t t h e or y f o rc las ses of s pa c es wit h u n ifor m s t r u
c t u r e, wec h o s e t h e t o p i c ‘ ‘ O n t h e existenceof fixedp o i n t s f o r some mappingclassesinspaceswithuniformstructureandapplications” forourdoctor
map-4 Scopeo f t h e r e s e a r c h
The thesis is concerned with study fixed point theorems in uniform spacesandapply to the problem of the solution existence of integral equations withunboundeddeviationalfunction
Trang 7The thesis can be a reference for under graduated students, master studentsandPh.D students in analysis major in general, and the fixed point theory andapplicationsinpar ticular.
The content of this thesis is presented in 3 chapters In addition, the thesisalsoconsistsProtestation,Acknowledgements,TableofContents, Preface,Conclusionsand Recommendations, List of scientific publications of the Ph.D studentrelated tothethesis,a ndReferences
In chapter 1, at first we recall some notions and known results aboutuniformspaces which are needed for later contents.Then we introduce the notion of
(Ψ,Π)-)-contractive mapping, which is an extension of the notion of(ψ, ϕ)-contraction of
contractivemappingsinu n i f o r m spaces and obtain some fixed point theorems for theclass of those mappings Theo-rems, which are obtained in uniform spaces, areconsidered as extensions of theoremsin complete metric spaces.Finally, applying our theorems
about fixed points of theclasso f ( β,Ψ1)-contractivem a p p i n g i n u n i f o r m s p a c e s ,
w e p r o v e t h e e x i s t e n c e o f s o - lutions of a class of nonlinear integral equations with unbounded deviations.Notethat, when we consider a class of integral equations with unbounded deviations,
Trang 8wecannotapplyknownfixed pointtheoremsin metricspaces.M a i n resultsofChapter
Trang 9Theorem2.2.5,Corollary 2.2.6,Theorem2.3.3 andT heorem2.3.6.
In Chapter 3, at first we present systematically some basic notions aboutlocallyconvex algebras needed for later sections After that, in section 3.2, byextending thenotion ofD-Lipschitz maps for mappings in locally convex algebras and
by basing onknown results in Banach algebras, and uniform spaces, we prove a fixedpoint theoremin locally convex algebras which is an extension of an obtained result by B C Dhage.Finally, in section3.3, applying obtained theorems, we prove the existence of solutionof a class ofintegral equations in locally convex algebras with unboundeddeviations.MainresultsofChapter3ar eTheorem3.2.5, Theorem3.3.2
In this thesis, we also introduce many examples in order to illustrate ourresultsandthemeaningofgivenextensiontheorems
Trang 10UNIFORMSPACES ANDF I X E D P O I N T T H E O R E M S
In this chapter, firstly we present some basic knowledge about uniformspacesandusefulresultsforlaterparts.T h e n , wegivesomefixedpointtheoremsfortheclassof
(Ψ,Π)-)-contractive mappings in uniform spaces In the last part of this chapter, weextendfixedpointtheoremsfortheclassofα-ψ-contractivemappingsinmetricspacesto
uniform spaces After that, we apply these new results to show a class ofintegralequationswithunboundeddeviationshaving auniquesolution
Definition1.1.1.A n uniformityoruniformstructureonXis a non-empty family
Uco n sist i n g ofsubsetsofX×Xw h i c h satisfy thefollowingconditions
Trang 11Cauchysequence,sequentially completeuniformspaceandtherelationship betweenthem.
Remark1.1.8.
1)LetXbeauniformspace.Then,uniformtopologyonXisgeneratedbythefamilyof uniformcontinuouspseudometricsonX
2) IfEislocallyconvexspacewithasaturatedfamilyofseminorms{p α}α∈I,
thenw e c a n d e fi n e a f a m i l y o f a s s oc i a t e p s e u d o m e t r ic s ρ α (x,y)=p α (x−y)f o r e v e
r y x,
y∈E.Theuniformtopologygeneratedthefamilyo f a s s o c i a t e p s e u d o m e t r i c s coin cideswiththeoriginaltopologyofthespaceE.T h e r e f o r e , asacorollaryofour
Trang 12T: X→ X.S u p p o s e t h a t
Trang 13
Nowf o r e v e r y ( n,r)∈ Iwec o n s i d e r t h e f u n c ti o n s , w h i c h i s g i v e n b y ψ (n,r) (t)= 2(n − 1)
t,f o r a l l t ≥ 0,a n d p u t Ψ = Φ = { ψ :(n,r)∈I}.D e n o t e b y j :I→I
ψαdα (Tx,Sy)≤ψ αdj(α) (x,y)−ϕ αdj(α) (x,y),
fora l l x , y∈X,w h e r e ψ α∈Ψ,ϕα∈Πf o r a l l α ∈I.
Supposej:I→Ibeasurjectivemap and for some ti x 0∈Xsuchthat thesequence{xn }with x 2k+1 =Tx 2k ,x 2k+2 =Sx 2k+1 , k≥0satisfies dα (x m+n, xm )≥d j(α) (x m+n,xm )fo rall m,n≥0,α∈I.
Then,t h e r e e x i s t s u ∈Xs u c h t h a t u =Tu=Su.
Moreover,ifXhasthej-monotonedecreasingproperty,thenthereexistsauniquepointu∈Xs u c h thatu=Tu=S u.
Trang 14}
DenoteΨ1={ψ α: α∈I}bea f a m i l y o ff u n c ti o n s w i t h t h e p r o p e r ti e s
(i) ψ α: R+→R+ismonotonenon-decreas ingand ψ α(0)=0
(ii) foreachα∈I,thereexistsψ α ∈ Ψ1suchthat
Denotebyβa familyoffunctions β={β α:X×X→R+,α∈I}.
Definition 1.3.7.Let (X,P)be a uniform space withP=d α (x, y) :α∈IandT:X→Xbe a given mapping.We say thatTis an (β,Ψ1)-contractiveif for
everyfunctionβ α∈βa n d ψα∈Ψ1wehave
βα (x,y).d α (Tx,Ty)≤ψ αdj(α) (x,y), forallx,y∈X.
Definition1 3 8 L e t T: X→ X.W e saythatTi s aβ-admissibleifforallx,y∈ X
andα ∈I,β α (x,y)≥1i m p l i e s β α (Tx,Ty)≥1.
a) Ti s continuous;or
b) fora l l α ∈ I,i f { xn }isa s e q u e n c e i n X s u c h t h a t β α (x n,xn+1 )≥ 1f o r a l l n andx n→x∈Xa s n→+∞,th enβ α (x n,x)≥1f o r a l l n ∈N∗.
Then,T hasa fi x e d p o i n t
Moreover,i f X isj - b o u n d e d a n d f o r e v e r y x , y∈ X,t h e r e e x i s t s z ∈ Xsucht h a t
βα (x,z)≥1a n d β α (y,z)≥1f o r a l l α ∈I,t h e n T h a s a u n i q u e fi x e d p o i n t
Wealsogivesomeexamplestoillustrateforourresults
Trang 150(s) d s
Inthissection, wewishtoinvestigatetheexistenceofauniquesolutiontononlinearintegralequations, as an application to the fixed point theorems proved in the Section1.3
Assumption1.4.1.A1) There exists a functionu:R2→Rsuch that for
eachcompacts u b s e t K ⊂R+,thereexistapositivenumberλ andψ K∈Ψ1suchthatforallt∈R
Trang 16• Give and prove theorems which confirm the existence and unique existence of
afixed point for the classof (Ψ,Π)-)-contractive maps in uniform space (Theorem
1.2.6,1.2.9)
Theser e s u l t s a r e w r i tt e n i n t h e a r ti c l e : TranV a n A n , K i e u P h u o n g C
h i a n d Le Khanh Hung (2014),Some fixed point theorems in uniform spaces, submitted
toFilomat
• Give and prove a theorem which confirm the existence and unique existence of
afixed point for the class of (β,Ψ1)-contractive mappings in uniform spaces(Theorem1.3.11) And apply Theorem 1.3.11 to prove the unique existence of solution
of a classofintegralequationswit hunboundeddeviations
These results are written in the article: Kieu Phuong Chi, Tran Van An,
LeKhanh Hung (2014),Fixed point theorems for(α-Ψ)-contractive type mappings inuniformspacesandapplications ,Filomat(toappear).
˜
∫
Trang 172.1 Coupledfi x e d p o i n t s i n p a r ti a l l y o r d e r e d u
n i f o r m spaces
In 2006, T G Bhaskar and V Lakshmikantham introduced the notion of
coupledfixed points of mappingsF:X×X→Xwith mixed monotone property and
obtainedsomeresultsfortheclassofthosemappingsinpartiallyorderedmetricspaces
Definition2.1.1.Let(X,≤) be a partially ordered set andF:X×X→X.The
mappingFis said to have themixed monotone propertyifFis monotone
non-
decreasinginitsfirstargumentandismonotonenon-increasinginitssecondargument,thatis,foranyx,y∈X
ifx1,x2∈X,x1≤x2thenF (x1,y)≤F(x2,y)
and
ify1,y2∈X,y1≤y2thenF (x,y1)≥F(x,y2).
Inthissection, w e provesomecoupled fixedpoint theorems forgeneralized con-tractivemappingsinpa rtiallyordered un iform spaces
LetΦ1={φ α:R+→R+;α ∈I}beafamilyoffunctions withtheproperties:
i) φ αismonotonenon-decreasing.
ii) 0<φ α (t)<tfor allt>0 andφ α(0)=0
Trang 18dαF (x,y),F(u,v)≤φα d
j(α) ( x, u ) + d j(α) ( y, v )
,
forallx ≤u,y≥v.
2) Foreachα∈I,thereexistsφ α ∈Φ1suchthatsup{φj n (α) (t):n=0,1, }≤
φ( t)and φ α (t)is non-decreasing.
α
t 3) Thereare x0,y0∈Xs u c h tha tx0≤F(x0,y0),y0≥F(y0,x0)a n d
Corollary2.1.6.InadditiontohypothesesofTheorem2.1.5,ifx0andy0are
compa-rablethenFh a s auniquefixedpoint, t hatis,ther eexistsx∈Xs u c h thatF(x,x)=x.
In 2011, V Berinde and M Borcut introduced the notion of triple fixed
pointsfor a classof mappingF:X×X×X→Xand obtained some triple fixed
pointtheorems for mappings with mixed monotone property in partially orderedmetricspaces.After that,in2012,H.AydiandE.Karapinarextendedtheaboveresultand
Trang 19obtained some triple fixed point theorems for a class of mappingF:X×X×X→Xwith mixed monotone property in partially ordered metric spaces and satisfying thefollowingweakcontractive condition.
Let (X,≤) be a partially ordered set.Then, we define a partial order onX3inthefollowingway:
For( x,y,z),(u,v,w)∈X3then
(x,y,z)≤(u,v,w)ifa n d o n l y i f x≤u,y≥ va n d z ≤ w.
Wes a y t h a t ( x,y,z)a n d ( u,v,w)a r e c o m p a r a b l e i f
(x,y,z)≤(u,v,w) or (u,v,w)≤(x,y,z).
Also,wesay that ( x,y,z)isequal t o(u,v,w)i f andonlyi f x =u,y =va n d z=w.
Definition 2.2.4.LetXbe a uniform space A mappingT:X→Xis said to beICSifTis
injective, continuous and has the property: for every
sequence{x n }inX,ifsequence{Tx n }isconvergentthen{x n}isalsoconvergent
Theorem2 2 5 Let( X,≤)b e a p a r ti a l l y o r d e r e d s e t a n d P ={d α (x,y):α∈I}be
a family of pseudometrics on X such that(X,P)is a Hausdorff sequentially completeuniform space Let
mappinghavingthemixedmonotonepropertyonX.Supposethat