By increasing the pulse area of the coupling laserpulse weobtain a stable propagation pulse.. When the area of the laser pulseissmallΩc0τ0≤2,5,asshowninFigures2.2aand2.2b,thelaserpulseis
Trang 1Specialty:Optics Code:62.44.01.09
ASUMMARYOFPHYSICALDOCTORALTHESIS
NGHEAN,2017
Trang 2Supervisors:Prof.Dr.DinhXuanKhoa
Reviewer1:Prof.Dr.NguyenQuangBau
Reviewer2:Assoc.Prof.DrChuDinhThuy
Reviewer3:Assoc.Prof.DrTranHongNhung
Thethesiswillbepresentedatschool-levelevaluatingCouncilat:
…… ….h…………,date…………month… year2017
Thethesiscanbefoundat:NationallibraryofVietnamorNguyenTh
ucHaoinformationandlibrarycenter,Vinhuniversity
Trang 3INTRODUCTION
In the past decades, the topic of laser pulses propagationwithoutdistortion (soliton) has been attracted much research attention ofscientistsbecauseoftheirpotentialapplicationsinopticalinformationanddataprocessing.Infact,whenthelightpulsepropagatesint h e r e s o n a n t medium,due to the absorption and dispersion that lead to reduction anddistortion ofthe signal pulse Therefore, to obtain pulse stability, weoftenuseultrashortpulseswithhighintensity.Moreover,mosto f t h e applications in modern photonic devices often require low-intensity lightwith highsensitivity Therefore, reducing the absorption in the resonancedomain is
an excellent solution to reduce the intensity of light pulse andincreasetheoperatingefficiencyof photonicdevices
Currently,aninterestingsolutionisusedtoreduceabsorptioniselectromagnetici n d u c t i o n t r a n s p a r e n c y ( E I T ) e f f e c t T h e b a s i s o f E I T i stheresultofquantuminterferencebetweentheprobabilitya m p l i t u d e s withintheatomicsystemwhichisinducedbylaserfields.UsingEITtechnique, some researchgroups have obtained stable laser pulses (soliton)in EIT medium Most recently, T Nakajimaand coworkers studied thepropagation of two short laser pulse trains in a
lambda-typeatomicmediumunderEITconditions.Theyobtainedlaserpulsespropagatin
g EIT medium without distortion in picosecond domain.Theinitial studies
of pulse propagation inEIT mediumo f t e n i g n o r e t h e
e f f e c t ofDopplerbroadening.Thiscan onlybesuitableforcoldatomicmediumor ultra-short laser pulses Moreover, many applications such as opticalcommunicationsthat require working with long laser pulses in nano ormicro-seconddomain
In addition to quantum interference effects of the shiftprobabilityamplitude,thereisaquantuminterferenceeffectoccursbetweenspontaneous emission channels by the non-orthogonal orientation of theelectricdipole moment is induced by two laser fields This interferencewillcreateacoherentofatomsiscalledthecoherenceisgeneratedbyspontaneousemission(spontaneouslyGeneratedCoherence-SGC).Experimentally, SGC effects wereobserved for the first time by Xia and etal 1996 in molecular sodium The presence of theSGC makes the mediumbecome more transparent and narrower the linewidth; larger and steeperdispersion Furthermore, the results also show thatthe effect of SGC makesan asymmetric medium so that the response of themedium is very sensitivetothephaseoflaserfields
Sofar,theinfluencesofSGCandrelativephaseontheopticalpropertieso f t
h e E I T m e d i u m u n d e r s t e a d y - s t a t e r e g i m e h a v e p u b l i s h e d
Trang 4
ikzt
However,theseinfluencesonpulsepropagationeffecthavenotbeeninvestigated
With the urgency of the issue of research and the reasons
mentionedabove,wechooseresearchtopic"investigationoflaserpulsepropagationi
nathree-levelatomicmediuminthepresenceofEITeffect".
TheaimofthethesisistostudytheeffectsoflasercouplingparametersandDopplerbroadeningontheprocessoflaserpulsepropagation in different pulse domains Studying oninfluences of the non-orthogonal orientation of electric dipole moments and therelative phase onthelaserpulsepropagationinthepresence ofincoherentpump
Chapter1 PULSEPROPAGATIONINRESONANTMEDIA
1.1 Interactionbetweentwo-levelatomsandlight
Weassumeasingleopticalfieldpropagatinginthezdirectionhaveform:
→ Ez,t z,te c.c , (1.1)where z,t ist h e e n v e l o p e f u n c t i o n , ωis i s t h e f r e q u en c y o fl ig h t , a n d k =ωis/ccisthewavenumber
Trang 5In the rotating wave approximation (RWA), to simplify
theHamiltonian, weintroducetheunitary transformmatrix:
H RWUHU †i UU † (1.6)
Trang 10Intherotationalwavereferencesystem,wederivethewaveequationfor each field:
om ic sy st e m as sh o w n i n Fi gur e 1 4 O ne t e r m ,
whichisduetoexcitationbytheresonantfieldp only,i.e.,adirectpathfromstate 1 tostate 2 ;Anadditionalterm,whichisduetothepresenceofthesecond fiel
d t ec,i e , a n i n d i r e c t p a t h f r o m s t a 1 tostate 2 tostate 3 andb a c k t o t h e s t a t
H e n c e , t h e t o t a l t r a n s i t i o n a m p l
i t u d evanishest h a t l e a d i n g t o t h e t r a n s p a r e n c y f o r t h e p r o b e l a s e r b e a
Trang 11Fig.1.4.Twoexcitedpathwaysfromthegroundstate1 totheexcitedstate2: directlyviathe 1 2 pathway,orindirectlyvia 1 2 3 2 pathway.
1.3 Physicalofthree-levelatomicsystem
1.3.1 TheRbatomic
Rbatomhastwonaturalisotopes:85Rbisstableisotopeoccupy72%,whileunstableisotope87Rbis28%
1.3.2 Thefinestructure
1.3.3 Thehyperfinestructure
Trang 12Fig.1.5.Fineandhyperfineenergyleveldiagramofan87 Rbatom.
Chapter2 PROPAGATIONOFPULSEINTHEINHOMOGENEOUSLYBROADENED
EIT MEDIUM
2.1 TheMaxwell-Blochequationsforthepulsepropagation
In this section, we consider three-level atom model as presentedinSection 1.2 Using the electric dipole- and rotating- waveapproximations,the densitymatrixequation(1.25)istransformed as,
Trang 14In the presence of Doppler broadening the evolution of the laserfieldand couplinglaserfieldinEqs.(2.2) haveform,
K u t t a a n d f i n i t e d i f f e r e n c e m e t h o d s T h e
atomicandlaserparametersarechosenas 21=2π6MHz, 32=2 π M H z ,
N10 15 m 3, d
21
Trang 152.53.10 29C.m
795 nm, c762 nm, p0=0 0 2GHzand
pc0,a s t h e a l l f o r a f i g u r e i n t h i s C h a p t e r W e a s s u me
bothlaserpulseandcouplinglaserpulsehavethesametemporalwidth0
withaGaussiantypeattheentranceofthemedium,
Trang 16In Fig 2.1, in the left column we represent cases ignore theDopplereffect (D = 0) By increasing the pulse area of the coupling laserpulse weobtain a stable propagation pulse When the area of the laser pulseis
smallΩc0τ0≤2,5,asshowninFigures2.2aand2.2b,thelaserpulseissignificantlyabsorbed and each laser pulse is broken down into severalsub-pulses with apositive-negative amplitude The number ofmodulationsatthetrailingedgeofthepulseincreasesasthepropagationdistanceincreases However, when the peak intensity of the coupling laserpulsebecomes larger Ωc0τ0= 1THz (Fig 2.1d) and accordingly the pulse areasbecome larger
Ωc0τ0= 25, Then propagate of the laser pulse is almost notdistorted, EIT is established Thephysical reason for this case is due to thedepth and width of the EITwindow is increased when the coupling laserintensity increase, so theinfluence of the medium on the pulse form in thiscase, is negligible
Similar consideration for the variation of the laser pulse envelopeinthe right column in the presence of Doppler effect, with D = 3.15GHzwhichc o r r e s p o n d s t o r o o m t e m p e r a t u r e C o m p a r e t h e t w o f
i g u r e s i n t h e left and right columns we see that the dynamic of pulse envelope shape isalmost the same.Thus, the influence of Doppler effect in this pulse domainis negligible andcan be ignored We can understand this because in thedomain ofpicoseconds, the time that the atoms exposed to laser pulses aresmall, sothe change velocity of atoms in each cycle of the laser pulse issignificant
Trang 17Fig 2.1.Temporal evolution of the probe pulsep (,) at p = 0 (solid), 5
ns1(dashed),a n d 1 0 n s
-1( dotted)w h e n τ0 =2 5 p s T h e p e a k i n t e n s i t y a n d p u l s e areas are givenas infigures.
2.3.2 Pulsepropagationinnanoseconddomain
The next, we consider the propagation of the laser pulse at the
pulseduration ofτ0= 25 ns which are approximate to the life time of theexcitedstate|
2.Theresultsshowthetimevariationofthelaserpulseenvelopeat
differento p t i c a l d e p t h s , p0,5 a n d 1 0 n s-1a s s h o w n i n F i g 2 2 T h epulse area and peak intensity of the control laser pulse are given inthefigure,theleftcolumncorrespondsto(D=0)andtherightcolumncorresponds(D= 3.15 GHz)
From Fig 2.2, show that for a small value of the pulse area(Ωc0τ0≤25) the laser pulse is almost collapsed due to resonant absorption inanatomic medium, there is no EIT effect (Figs 2.2a and Fig 2.2b) When
Trang 18thepulsearea(thus thepulsepeak)of thecouplingbeam in cre ases, although
Trang 19the leading edge of the probe pulse is still distorted but the endingedgeapproachese a r l i e r t r a n s p a r e n c y , a s s h o w n i n F i g s 2 2
c a n d 2 2 d T h i s phenomenon is due to the energy loss to prepare for the EIT formation ofthe probepulse In particular, when increased peak intensity to Ωc0= 200GHz,respectively the pulse area reaches to the value of Ωc0τ0= 5×103(Fig.2f),the probe pulse is almost unchanged, namely, an ideal EIT or solitonisestablished
SimilarconsiderationforthecaseoftheDopplerbroadeningaspresented
in the right column of Fig 2.1 From this figure we observe thatsimilardynamics occur but in order to reach the EIT form of probe pulse,largerintensity of coupling pulse is required, that is at the same intensityofcoupling pulse (for example, Figs 2f and 2f1), the probe pulseapproachesto later EIT form in presence of the Doppler broadening Thisbehavior isdue to theDopplerbroadening reducesEIT efficiency,hencet h e
p r o b e laserpulseisdecayed faster thanthe caseof Doppler-free
Trang 20Fig 2.2.Temporal evolution of the probe pulsep (,) at p = 0 (solid), 5
nτ0ontheEITformationoftheprobepulse,weconsiderthet e m p o r a l evolutio
n of the laser pulse p (,)when fixed pulse width τ0= 0.25μ sasshown in Fig.
2.3 By comparing Fig 2.3 with Fig 2.2, we show that theideal EIT effectcan achieve by the increase coupling laser pulse.However,int h e l o n g p u l se r e g i o n m i c r o s e c o n d i s t h e E I T e f f e c t o bt
a in ed a t p u l se area largertentimes (Ωc0τ0=5×104)asshowninFigs.2.3fand2.2f
Similar, when we compare the Figs in the left and right columnsforthecaseignoreandpresentDopplerbroadening.Weshowthatw h e n presentDopplerbroadenislaserpulsedistortedandstrongabsorbed.Influence theDoppler broadening is significant and can’t ignore evenwhenEITpulseformobtainsanideanear
Trang 22Fig 2.3.Temporal evolution of the probe pulsep (,) at p = 0 (solid), 5
ns-1(dashed), and 10 ns-1(dotted) when τ0= 0.25 µs The peak intensity and
pulseareas are givenasinfigures.
Fig.2.4(a)Temporalevolutionoftheprobepulseatopticaldepthp =5ns-1; (b)variationofprobepeakversusopticaldepthatd i f f e r e n t D o p p l e r w i d t h s when 0 =1nsand c0 = 10 GHz.
Chapter3 INFLUENCESOFELECTRIC- DIPOLEMOMENTORIENTATIONANDRELATIVE PHASE
ONPULSEPROPAGATION 3.1 Theoreticalmodel
Trang 23We consider the three-level cascade-type atomic system withnearlyequispacedlevelsasshowninFig.3.1.Aweakprobefield1withfrequency
pdrivesthetransition|1|2,whilethetransition|2 |3is
Trang 24coupled by a strong field2w i t h f r e q u e n c yc We denote21a n d32being the decay rate of the states |2and |3, respectively Anincoherentpumpw i t h a p u m p i n g r a t e 2 R i s a p p l i e d b e t w e e n l e v e l s |
1 a n d | 3 .T h e
Rabi frequencies of the fields are defined as 1 2d12E p / and
22d23Ec/,withd 12 andd 23 aretheelectricdipolematrixelement,respectively.
createdbytheinterferenceofspontaneousemission
→(–→usuallycalledspontaneousg e n e r a t e d c o h e r e n c e : S
systemdependnotonlyonamplitudesanddetuningbutalsothephaseofthep r o b e a n d c o u p l i n g f i e l d s , t h u s w e h a v e t o t r e a t R a b i f r e q u e n
Trang 25( ) i 2p ,(3.1d)
2 p 22 11
Trang 26ij ij (i j) and the conservation condition
1122331.Inequations(3.1),ijdescribethecoherencedecayratesfromstate|itostate|jandrepresentedwiththepopulationdecayratesijby
h a n a d d i t i o n a l
term2p 213223.If=1,theSGCeffecthastobetakenintoaccountand the strength of SGC will vary versus; otherwise= 0, the effect ofSGC
is absent
wave approximation, and consider in the local frame where= zandtz/cc,
Thesamesection1.2.2,usingtheslowly-varyingenvelopeandtherotating-we also obtained the propagation equations for laser fields,respectively:
( ,)2i( ,), (3.4)
p p1 2
c (,)2ic23 (,) (3.4)Wealsoassumethattheenvelopeoffieldistheslowandattheentrancetothe mediumhaving formedas(2.5)
3.2 InfluenceofSGConthelaserpulsepropagation
Tostartwith,weignoretheeffectofSGC,i.e.,=0andhence=0, thenchoosing the appropriate values of coupling intensity and pulseduration asc0= 25 GHz and0= 25
envelopeisu n d i s t o r t e d d u r i n g t h e p r o p a g a t i o n p r o c e s s t h a t
i s t h e n e a r i d e a l E I T effect isestablished asshown infigure 3.2a
In order to investigate the influence of SGC on the propagationeffectoflaserpulsewefix=1andrelativephase=0,a n d p l o t spatiotemporal
Trang 27evolution of the pulse probep(,) for different values ofquantum
interference parameterp The results show that, when the SGCpresents,i e , p 0 , t h e p r o b e p u l s e e n v e l o p e i s s i g n i f i c
a n t l y d i s t o r t e d
Trang 28during the propagation The modulations of the pulse envelope increase
asthe parameterpincreases [see figures (3.2b)-(3.2d)] It is also notable
thatthe modulations of the envelope are mainly concentrated on theleadingedge, and these modulations increase as the propagation distanceincreases.The primary reason for the modulations at leading edge of pulsewith theSGC, arises from the influence of SGC on absorption anddispersion,
theabsorptionpeakonbothsidesofzerodetuningandthelinewidthofabsorptionline become larger and narrower than those in the case ofSGCabsents,thereforethedispersioncurvebecomesmuchsteeper(hencedisper
In order to see the control role of relative phase on the EIT effect
ofprobe pulse we fix the parameterp= 0.7 and plot the temporal evolution
ofthe pulse probep(,) at the optical depthp= 5ns-1for differentvaluesof relative phase, as illustrated in figure 3.3 From figure 3.3a wecan seethat the probe pulse envelope depends sensitively on the relativephase
andthei n f l u e n c e o f r e l a t i v e p h a s e o n t h e t e m p o r a l e v o l u t
i o n o f p u l s e i s a periodo f 2 .F o r 0 /c
Trang 292:a t = 0 , d u e t o S G C m a k i n g t h e l e a d i n g edgeofpulseenvelopeisdistortedasoneconsideredinfigure3.2(c),when